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ABSTRACT

We attack the state-of-the-art Go-playing AI system KataGo by training adver-
sarial policies that play against frozen KataGo victims. Our attack achieves a
>99% win rate when KataGo uses no tree search, and a >97% win rate when
KataGo uses enough search to be superhuman. We train our adversaries with a
modified KataGo implementation, using less than 14% of the compute used to
train the original KataGo. Notably, our adversaries do not win by learning to
play Go better than KataGo—in fact, our adversaries are easily beaten by human
amateurs. Instead, our adversaries win by tricking KataGo into making serious
blunders. Our attack transfers zero-shot to other superhuman Go-playing AIs,
and is interpretable to the extent that human experts can successfully implement
it, without algorithmic assistance, to consistently beat superhuman AIs. Our re-
sults demonstrate that even superhuman AI systems may harbor surprising failure
modes. Example games are available at goattack.far.ai.

1 INTRODUCTION

Reinforcement learning from self-play has achieved superhuman performance in a range of games
including Go (Silver et al., 2016), chess and shogi (Silver et al., 2016), and Dota (OpenAI et al.,
2019). Moreover, idealized versions of self-play provably converge to Nash equilibria (Brown,
1951; Heinrich et al., 2015). Although realistic versions of self-play need not converge, their strong
empirical performance seems to suggest this is rarely an issue in practice.

Nonetheless, prior work has found that seemingly highly capable continuous control policies trained
via self-play can be exploited by adversarial policies (Gleave et al., 2020; Wu et al., 2021). This
suggests that self-play may not be as robust as previously thought. However, although the victim
agents are state-of-the-art for continuous control, they are still well below human performance. This
raises the question: are adversarial policies a vulnerability of self-play policies in general, or simply
an artifact of insufficiently capable policies?

To answer this, we study a domain where self-play has achieved very strong performance: Go.
Specifically, we train adversarial policies end-to-end to attack KataGo (Wu, 2019), the strongest
publicly available Go-playing AI system. Using less than 14% of the compute used to train KataGo,
we obtain adversarial policies that win >99% of the time against KataGo with no search, and >97%
of the time against KataGo with enough search to be superhuman.

Critically, our adversaries do not win by learning a generally capable Go policy. Instead, the adver-
saries trick KataGo into making serious blunders that result in KataGo losing the game (Figure 1.1).
Despite being able to beat KataGo, our adversarial policies lose against even amateur Go players
(see Appendix I.1). This is a clear example of non-transitivity, illustrated in Figure 2.1.

Our adversaries have no special powers: they can only place stones or pass, like a regular player.
We do however give our adversaries access to the victim network they are attacking. In particular,
we train our adversaries using an AlphaZero-style training process (Silver et al., 2018), similar to
that of KataGo. The key differences are that we collect games with the adversary playing against
the victim, and that we use the victim network to select victim moves during the adversary’s tree
search.
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(a) Our cyclic-adversary wins as white by capturing
a cyclic group (X) that the victim (Latestdef, 10
million visits) leaves vulnerable. Explore the game.

(b) Our pass-adversary wins as black by tricking
the victim (Latest, no search) into passing prema-
turely, ending the game. Explore the game.

Figure 1.1: Games between the strongest KataGo network (which we refer to as Latest) and
two different types of adversaries we trained. (a) Our cyclic-adversary beats KataGo even when
KataGo plays with far more search than is needed to be superhuman. The adversary lures the victim
into letting a large group of cyclic victim stones (X) get captured by the adversary’s next move
(∆). Appendix I.2 has a detailed description of this adversary’s behavior. (b) Our pass-adversary
beats no-search KataGo by tricking it into passing. The adversary then passes in turn, ending the
game with the adversary winning under the Tromp-Taylor ruleset for computer Go (Tromp, 2014)
that KataGo was trained and configured to use (see Appendix A). The adversary gets points for its
territory in the bottom-right corner (devoid of victim stones) whereas the victim does not get points
for the territory in the top-left due to the presence of the adversary’s stones.

KataGo can play at a strongly superhuman level, winning (Wu, 2019, Section 5.1) against ELF
OpenGo (Tian et al., 2019) and Leela Zero (Pascutto, 2019) that are themselves superhuman. In
Appendix E, we estimate that KataGo without search plays at the level of a top-100 European player,
and that KataGo is superhuman at or above 128 visits of search per move. Our attack scales far
beyond this level, achieving a 72% win rate against KataGo playing with 107 visits of search per
move.

Our paper makes three contributions. First, we propose a novel attack method, hybridizing the attack
of Gleave et al. (2020) with AlphaZero-style training (Silver et al., 2018). Second, we demonstrate
the existence of two distinct adversarial policies against the state-of-the-art Go AI system, KataGo.
Finally, we provide a detailed empirical investigation into these adversarial policies, including show-
ing they partially transfer to other Go AIs and learn interpretable strategies that can be replicated by
experts under standard human playing conditions. Our open-source implementation is available at
GitHub.

2 RELATED WORK

Our work is inspired by the presence of adversarial examples in a wide variety of models (Szegedy
et al., 2014). Notably, many image classifiers reach or surpass human performance (Ho-Phuoc,
2018; Russakovsky et al., 2015; Shankar et al., 2020; Pham et al., 2021). Yet even these state-
of-the-art image classifiers are vulnerable to adversarial examples (Carlini et al., 2019; Ren et al.,
2020). This raises the question: could highly capable deep RL policies be similarly vulnerable?

One might hope that the adversarial nature of self-play training would naturally lead to robustness.
This strategy works for image classifiers, where adversarial training is an effective if computation-
ally expensive defense (Madry et al., 2018; Ren et al., 2020). This view is bolstered by idealized
versions of self-play provably converging to a Nash equilibrium, which is unexploitable (Brown,
1951; Heinrich et al., 2015). However, our work finds that in practice even state-of-the-art and
superhuman-level deep RL policies are still highly vulnerable to exploitation.
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BEATS?!

Human
Amateur

BEATS

Unexpected Result: If play were transitive,
Human players would not beat Adversary!

Human
Professional

BEATS
KataGo
Victim

BEATSAdversary

Figure 2.1: A human amateur beats our adversarial policy (Appendix I.1) that beats KataGo. This
non-transitivity shows the adversary is not a generally capable policy, and is just exploiting KataGo.

It is known that self-play may not converge in non-transitive games (Balduzzi et al., 2019) like rock-
paper-scissors, where agent A beats B and B beats C yet C beats A. However, Czarnecki et al. (2020)
has argued that real-world games like Go grow increasingly transitive as skill increases. This would
imply that while self-play may struggle with non-transitivity early on during training, comparisons
involving highly capable policies such as KataGo should be mostly transitive. By contrast, we find
significant non-transitivity: our adversaries exploit KataGo agents that beat human professionals,
yet lose to most amateur Go players (Appendix I.1).

Most prior work attacking deep RL has focused on perturbing observations (Huang et al., 2017;
Ilahi et al., 2022). Concurrent work by Lan et al. (2022) shows that KataGo with ≤50 visits can
be induced to play poorly by adding two adversarially chosen moves to a board, even though these
moves do not substantially change the win rate estimated by KataGo with 800 visits. However, the
perturbed input is highly off-distribution, as the move history seen by the KataGo network implies
that it chose to play a seemingly poor move on the previous turn. Moreover, an attacker that can
force the opponent to play a specific move has easier ways to win: it could simply make the opponent
resign, or play a maximally bad move. We instead follow the threat model introduced by Gleave
et al. (2020) of an adversarial agent acting in a shared environment.

Prior work on such adversarial policies has focused on attacking subhuman policies in simulated
robotics environments (Gleave et al., 2020; Wu et al., 2021). In these environments, the adversary
can often win just by causing the victim to make small changes to its actions. By contrast, our work
focuses on exploiting superhuman-level Go policies that have a discrete action space. Despite the
more challenging setting, we find these policies are not only vulnerable to attack, but also fail in
surprising ways that are quite different from human-like mistakes.

Adversarial policies give a lower bound on the exploitability of an agent: how much expected utility
a best-response policy achieves above the minimax value of the game. Exactly computing a policy’s
exploitability is feasible in some low-dimensional games (Johanson et al., 2011), but not in larger
games such as Go with approximately 10172 possible states (Allis, 1994, Section 6.3.12). Prior work
has lower bounded the exploitability in some poker variants using search (Lisý & Bowling, 2017),
but the method relies on domain-specific heuristics that are not applicable to Go.

In concurrent work Timbers et al. (2022) developed the approximate best response (ABR) method to
estimating exploitability. Whereas we exploit the open-source KataGo agent, they exploit a propri-
etary replica of AlphaZero from Schmid et al. (2021). They obtain a 90% win rate against no-search
AlphaZero and 65% with 800 visits (Timbers et al., 2022, Figure 3). In Appendix E.3 we estimate
that their AlphaZero victim with 800 visits plays at least at the level of a top-200 professional, and
may be superhuman. That we were both able to exploit unrelated codebases confirms the vulnera-
bility is in AlphaZero-style training as a whole, not merely an implementation bug.

Both Timbers et al. and our attacks use an AlphaZero-style training procedure adapted to use the
opponent’s policy during search, with a curriculum over the victim’s search budget. However, our
curriculum also varies the victim checkpoint. Furthermore, we trained our cyclic-adversary by first
manually patching KataGo to protect against our initial pass-adversary, then repeating the attack.

Our main contribution lies in our experimental results: we find our attack beats victims playing with
up to 107 visits whereas Timbers et al. only test up to 800 visits. Moreover, we find our cyclic-
adversary is interpretable enough to be reliably replicated by a human expert. Additionally, we
investigate modeling the victim’s search process inside our adversary, show the victim’s predicted
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win rate is miscalibrated, qualitatively analyse games played by the adversary, and investigate trans-
fer of adversarial policies to other Go AIs.

3 BACKGROUND

3.1 THREAT MODEL

Following Gleave et al. (2020), we consider the setting of a two-player zero-sum Markov
game (Shapley, 1953). Our threat model assumes the attacker plays as one of the agents, which
we will call the adversary, and seeks to win via standard play against some victim agent.

The key capability we grant to the attacker is gray-box access to the victim agent. That is, the
attacker can evaluate the victim’s neural network on arbitrary inputs. However, the attacker does
not have direct access to the network weights. We furthermore assume the victim agent follows a
fixed policy, corresponding to the common case of a pre-trained model deployed with static weights.
Gray-box access to a fixed victim naturally arises whenever the attacker can run a copy of the victim
agent, e.g., when attacking a commercially available or open-source Go AI system. However, we
also weaken this assumption in some of our experiments, seeking to transfer the attack to an unseen
victim agent—an extreme case of a black-box attack.

We know the victim must have some weak spots: optimal play is intractable in a game as complex
as Go. However, these vulnerabilities could be quite hard to find, especially using only gray-box
access. In particular, exploits that are easy to discover will tend to have already been found by
self-play training, resulting in the victim being immunized against them.

Consequently, our two primary success metrics are the win rate of the adversarial policy against
the victim and the adversary’s training and inference time. We also track the mean score difference
between the adversary and victim, but this is not explicitly optimized for by the attack. Tracking
training and inference time rules out the degenerate “attack” of simply training KataGo for longer
than the victim, or letting it search deeper at inference.

In principle, it is possible that a more sample-efficient training regime could produce a stronger agent
than KataGo in a fraction of the training time. While this might be an important advance in computer
Go, we would hesitate to classify it as an attack. Rather, we are looking for the adversarial policy
to demonstrate non-transitivity, as this suggests the adversary is winning by exploiting a specific
weakness in the opponent. That is, as depicted in Figure 2.1, the adversary beats the victim, the
victim beats some baseline opponent, and that baseline opponent can in turn beat the adversary.

3.2 KATAGO

We chose to attack KataGo as it is the strongest publicly available Go AI system at the time of
writing. KataGo won against ELF OpenGo (Tian et al., 2019) and Leela Zero (Pascutto, 2019) after
training for only 513 V100 GPU days (Wu, 2019, section 5.1). ELF OpenGo is itself superhuman,
having won all 20 games played against four top-30 professional players. The latest networks of
KataGo are even stronger than the original, having been trained for over 15,000 V100-equivalent
GPU days (Appendix D.2). Indeed, even the policy network with no search is competitive with top
professionals (see Appendix E.1).

KataGo learns via self-play, using an AlphaZero-style training procedure (Silver et al., 2018). The
agent contains a neural network with a policy head, outputting a probability distribution over the
next move, and a value head, estimating the win rate from the current state. It then conducts Monte-
Carlo Tree Search (MCTS) using these heads to select self-play moves, described in Appendix B.1.
KataGo trains the policy head to predict the outcome of this tree search, a policy improvement
operator, and trains the value head to predict whether the agent wins the self-play game.

In contrast to AlphaZero, KataGo includes several additional heads predicting auxiliary targets such
as the opponent’s move on the following turn and which player “owns” a square on the board. These
heads’ outputs are not used for actual game play, serving only to speed up training via the addition of
auxiliary losses. KataGo also introduces architectural improvements such as global pooling, training
process improvements such as playout cap randomization, and hand-engineered input features such
as a ladderable stones mask.
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These modifications to KataGo improve its sample and compute efficiency by several orders of
magnitude relative to prior work such as ELF OpenGo, and protect KataGo from some previously
known vulnerabilities in neural-net-based Go AIs (Appendix K). For these reasons, we choose to
build our attack on top of KataGo, adopting it’s various architecture and training improvements and
hand-engineered features. In principle though, the same attack could be implemented on top of any
AlphaZero-style training pipeline. We describe our extensions to KataGo in the following section.

4 ATTACK METHODOLOGY

Prior works, such as KataGo and AlphaZero, train on self-play games where the agent plays many
games against itself. We instead train on games between our adversary and a fixed victim agent, and
only train the adversary on data from the turns where it is the adversary’s move, since we wish to
train the adversary to exploit the victim, not mimic it. We dub this procedure victim-play.

In regular self-play, the agent models its opponent’s moves by sampling from its own policy network.
This makes sense in self-play, as the policy is playing itself. But in victim-play, it would be a
mistake to model the victim’s behavior using the adversary’s policy network. We introduce two
distinct families of Adversarial MCTS (A-MCTS) to address this problem. See Appendix C for the
hyperparameter settings we used in experiments.

Adversarial MCTS: Sample (A-MCTS-S). In A-MCTS-S (Appendix B.2), we modify the adver-
sary’s search procedure to sample from the victim’s policy head at nodes in the Monte Carlo search
tree where it is the victim’s turn to move (victim-nodes), and from the adversary’s policy head at
nodes where it is the adversary’s turn to move (adversary-nodes). We also disable some KataGo
optimizations, such as adding noise to the policy network at the root. Finally, we introduce a variant
A-MCTS-S++ (Appendix B.3) that averages the victim policy network over board symmetries, to
match the default behavior of KataGo.

Adversarial MCTS: Recursive (A-MCTS-R). A-MCTS-S underestimates the strength of victims
that use search as it models the victim as sampling directly from the victim’s policy head. To resolve
this, A-MCTS-R (Appendix B.4) runs MCTS for the victim at each victim-node in the A-MCTS-R
tree. Unfortunately, this change increases the computational complexity of both adversary training
and inference by a factor equal to the victim’s search budget. We use A-MCTS-R primarily to study
the benefits of using a more accurate model of the victim.

Initialization. We randomly initialize the adversary’s network. Note that we cannot initialize the
adversary’s weights to those of the victim as our threat model does not allow white-box access.
Additionally, a random initialization encourages exploration to find weaknesses in the victim, rather
than simply producing a stronger Go player. However, a randomly initialized network will almost
always lose against a highly capable network, leading to a challenging initial learning problem.
Fortunately, the adversary’s network is able to learn something useful about the game even from
games that are lost due to KataGo’s auxiliary losses.

Curriculum. We use a curriculum that trains against successively stronger versions of the victim
in order to help overcome the challenging random initialization. We switch to a more challenging
victim agent once the adversary’s win rate exceeds a certain threshold. We modulate victim strength
in two ways. First, we train against successively later checkpoints of the victim agent, as KataGo
releases its entire training history. Second, we increase the amount of search that the victim performs
during victim-play.

5 EVALUATION

We evaluate our attack method against KataGo (Wu, 2019). In Section 5.1 we use A-MCTS-S
to train our pass-adversary, achieving a 99.9% win rate against Latest (the strongest KataGo
network) playing without search. Notably Latest is very strong even without search: we find in
Appendix E.1 that it is comparable to a top-100 European player. The pass-adversary beats Latest
by tricking it into passing early and losing (Figure 1.1b).

In Section 5.2, we then add a pass-alive defense to the victim to defend against the aforementioned
attack. The defended victim Latestdef provably can not lose via accidentally passing, and is about
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as strong as Latest (Latestdef beats Latest in 456/1000 games when both agents use no tree
search, and in 461/1000 games when both agents use 2048 visits/move of search).

Repeating the A-MCTS-S attack against Latestdef yields our cyclic-adversary that achieves
a 100% win rate over 1048 games against Latestdef playing without search. The cyclic-
adversary succeeds against victims playing with search as well, achieving a 95.7% win rate against
Latestdef with 4096 visits in Section 5.3.

The cyclic-adversary is qualitatively very different from the pass-adversary as it does not use the
pass-trick (Figure 1.1a). To check that our defense did not introduce any unintended weaknesses,
we evaluate our cyclic-adversary against the unmodified Latest. The cyclic-adversary achieves a
100% win rate over 1000 games against Latest without search, a 97.3% win rate against Latest
with 4096 visits, and a 72% win rate against Latest with 107 visits. In Appendix E.2, we esti-
mate that Latest with 4096 visits is already much stronger than the best human Go players, and
Latest with 107 visits far surpasses human players.

5.1 ATTACKING A VICTIM WITHOUT SEARCH

Our pass-adversary playing with 600 visits achieves a 99.9% win rate against Latest with no
search. Notably, our pass-adversary wins despite being trained with just 0.13% of Latest’s train-
ing budget (Appendix D). Importantly, the pass-adversary does not win by playing a stronger game
of Go than Latest. Instead, it follows a bizarre strategy illustrated in Figure 1.1b that loses even
against human amateurs (see Appendix I.1). The strategy tricks the KataGo policy head into pass-
ing prematurely at a move where the adversary has more points under Tromp-Taylor Rules (Ap-
pendix A).

We trained our pass-adversary using A-MCTS-S and a curriculum, as described in Section 4. Our
curriculum starts from a checkpoint cp127 around a quarter of the way through KataGo’s train-
ing, and ends with the Latest checkpoint corresponding to the strongest KataGo network (see
Appendix C.1 for details).

Appendix F contains further evaluation and analysis of our pass-adversary. Although this adversary
was only trained on no-search victims, it transfers to very low search victims. Using A-MCTS-R
the adversary achieves an 88% win rate against Latest playing with 8 visits. This win rate drops
to 15% when the adversary uses A-MCTS-S.

5.2 ATTACKING A DEFENDED VICTIM

We design a hard-coded defense for the victim against the attack found in Section 5.1: only passing
when it cannot change the outcome of the game. Concretely, we only allow the victim to pass
when its only legal moves are in its own pass-alive territory, a concept described in the official
KataGo rules (Wu, 2021b) and which extends the traditional Go notion of a pass-alive group (see
Appendix B.6 for a full description of the defense). Given a victim V, we let Vdef denote the victim
with this defense applied. The defense completely thwarts the pass-adversary from Section 5.1; the
pass-adversary loses every game out of 1000 against Latestdef.

We repeat our A-MCTS-S attack against the defended victim, obtaining our cyclic-adversary. The
curriculum (Appendix C.2) starts from an early checkpoint cp39def with no search and continues
until Latestdef. The curriculum then starts increasing the number of victim visits.

In Figure 5.1 we evaluate various cyclic-policy checkpoints against the policy networks of cp39def,
cp127def, and Latestdef. We see that an attack that works against Latestdef transfers well
to cp127def but not to cp39def, and an attack against cp39def early in training did not transfer
well to cp127def or Latestdef. These results suggest that different checkpoints have unique
vulnerabilities. We analyze the evolution of our cyclic-adversary’s strategy in Appendix I.3.

Our best cyclic-adversary checkpoint playing with 600 visits against Latestdef playing with no
search achieves a 100.0% win rate over 1048 games. The cyclic-adversary also still works against
Latest with the defense disabled, achieving a 100.0% win rate over 1000 games. The cyclic-
adversary is trained using roughly 14.0% of the compute used for training Latest (Appendix D).
The cyclic-adversary still loses against human amateurs (see Appendix I.1).
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Figure 5.1: The win rate (y-axis) of the cyclic-adversary over time (x-axis) playing with 600
visits against four different victims. The strongest cyclic-adversary checkpoint (marked �) wins
1048/1048 = 100% games against Latestdef without search and 1007/1052 = 95.7% games
against Latestdef with 4096 visits. The shaded interval is a 95% Clopper-Pearson interval over
50 games per checkpoint. The cyclic-adversary is trained with a curriculum, starting from cp39def
without search and ending at Latestdef with 131,072 visits. Vertical dotted lines denote switches
to stronger victim networks or to an increase in Latestdef’s search budget. See Appendix C.2 for
the exact curriculum specification.
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(a) Win rate of cyclic-adversary (y-axis) playing
with 600 visits/move vs. Latestdef with varying
amounts of search (x-axis). Victims with more search
are harder to exploit.
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(b) Win rate of cyclic-adversary (y-axis) playing with
varying visits (x-axis). The victim Latestdef plays
with a fixed 4096 visits/move. Win rates are best with
128–600 adversary visits.

Figure 5.2: We evaluate the cyclic-adversary’s win rate against Latestdef with varying amounts of
search (left: victim, right: adversary). Shaded regions and error bars denote 95% Clopper-Pearson
confidence intervals over ~150 games.

5.3 ATTACKING A VICTIM WITH SEARCH

We evaluate the ability of our cyclic-adversary to exploit victims playing with search and find that
it still achieves strong win rates by tricking its victims into making severe mistakes a human would
avoid (see Appendix I.2).

The cyclic-adversary achieves a win rate of to 95.7% against Latestdef with 4096 visits. The
adversary also achieves a 97.3% win rate against an undefended Latest with 4096 visits, verifying
that our adversary is not exploiting anomalous behavior introduced by the defense.

In Figure 5.2, we study the effects of varying both adversary and victim search. We find that for
a fixed adversary search budget, victims with more search are harder to exploit. For a fixed victim
search budget, the adversary does best at 128–600 visits, and A-MCTS-S++ performs no better than
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Figure 5.3: Analysis of predicted win rate when Latest plays the cyclic-adversary.

the computationally cheaper A-MCTS-S. Intriguingly, increasing adversary visits beyond 600 does
not help and may even hurt performance, suggesting the adversary’s strategy does not benefit from
greater look-ahead.

In Figure 5.2a, we also plot the performance of A-MCTS-R (which correctly models the victim).
In experiments with an earlier checkpoint of the cyclic-adversary, we saw A-MCTS-R outperform
A-MCTS-S (which incorrectly models the victim as having no search) (see Figure H.1 in the Ap-
pendix). With our current version of the cyclic-adversary, A-MCTS-S does so well that A-MCTS-R
cannot provide any improvement up to 128 victim visits. The downside of A-MCTS-R is that it dras-
tically increases the amount of compute, to the point that it is impractical to evaluate A-MCTS-R at
higher visit counts.

Finally, we also tested our cyclic-adversary against Latest with substantially higher victim visits.
The adversary (using A-MCTS-S with 600 visits/move) achieved an 82% win rate over 50 games
against Latest with 106 visits/move, and a 72% win rate over 50 games against Latest with 107

visits/move, using 10 and 1024 search threads respectively (see Appendix C). This demonstrates that
search is not a practical defense against the attack: 107 visits is already prohibitive in many applica-
tions, taking over one hour per move to evaluate even on high-end consumer hardware (Yao, 2022).
Indeed, Tian et al. (2019) used two orders of magnitude less search than this even in tournament
games against human professionals.

That said, the adversary win rate does decrease with more victim search. This is even more apparent
against a weaker adversary (Figure H.1), and the victim tends to judge positions more accurately
with more search (Appendix H). We conclude that search is a valid tool for improving robustness,
but will not produce fully robust agents on its own.

5.4 UNDERSTANDING THE CYCLIC-ADVERSARY

Qualitatively, the cyclic-adversary we trained in Section 5.2 wins by coaxing the victim into creating
a large group of stones in a circular pattern, thereby exploiting a weakness in KataGo’s network
which allows the adversary to capture the group. This causes the score to shift decisively and
unrecoverably in the adversary’s favor.

To better understand the attack, we examined the win rate predictions produced by both the adver-
sary’s and the victim’s value networks at each turn of a game. Typically the victim predicts that it
will win with over 99% confidence for most of the game, then suddenly realizes it will lose with high
probability, often just one move before its circular group is captured. This trend is depicted in Fig-
ure 5.3a: the victim’s prediction loss is elevated throughout the majority of the game, only dipping
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close to the self-play baseline around 40-50 moves from the end of the game. In some games, we
observe that the victim’s win rate prediction oscillates wildly before finally converging on certainty
that it will lose (Figure 5.3b). This is in stark contrast to the adversary’s own predictions, which
change much more slowly and are less confident.

We test several hard-coded baseline attacks in Appendix F.5. We find that none of the attacks work
well against Latestdef, although the Edge baseline playing as white wins almost half of the time
against the unhardened Latest. This provides further evidence that Latestdef is more robust
than Latest, and that the cyclic-adversary has learned a relatively sophisticated exploit.

5.5 TRANSFER

In Appendix G.1 we evaluate our cyclic-adversary (trained only on KataGo) in zero-shot transfer
against two different superhuman Go agents, Leela Zero and ELF OpenGo. This setting is especially
challenging because A-MCTS models the victim as being KataGo and will be continually surprised
by the moves taken by the Leela or ELF opponent. Nonetheless, the adversary wins 6.1% of games
against Leela and 3.5% of games against ELF.

In Appendix G.2 one of our authors, a Go expert, was able to learn from our adversary’s game
records to implement this attack without any algorithmic assistance. Playing in standard human
conditions on the online Go server KGS they obtained a greater than 90% win rate against a top
ranked bot that is unaffiliated with the authors. The author even won giving the bot 9 handicap
stones, an enormous advantage: a human professional with this handicap would have a virtually
100% win rate against any opponent, whether human or AI. They also beat KataGo and Leela Zero
playing with 100k visits each, which is normally far beyond human capabilities.

These results confirm that the cyclic vulnerability is present in a range of bots under a variety of
configurations. They also further highlight the significance and interpretability of the exploit our
algorithmic adversary finds. The adversary is not finding, for instance, just a special sequence of
moves, but a strategy that a human can learn and act on. In addition, in both algorithmic and human
transfer, the attacker does not have access to the victim model’s weights, policy network output,
or even a large number of games to learn from. This increases the threat level and suggests, for
example, that one could learn an attack on an open-source system and then transfer it to a closed-
source model.

6 LIMITATIONS AND FUTURE WORK

This paper has demonstrated that even superhuman agents can be vulnerable to adversarial policies.
However, our results do not establish how common such vulnerabilities are: it is possible Go-playing
AI systems are unusually vulnerable. A promising direction for future work is to evaluate our attack
against strong AI systems in other games.

It is natural to ask how we can defend against adversarial policies. Fortunately, there are a number
of promising multi-agent RL techniques. A key direction for future work is to evaluate policies
trained with these approaches to determine whether they are also exploitable. One such technique
is counterfactual regret minimization (Zinkevich et al., 2007, CFR), which can beat professional
human poker players (Brown & Sandholm, 2018). CFR has difficulty scaling to high-dimensional
state spaces, but regularization methods (Perolat et al., 2021) can natively scale to games such as
Stratego with a game tree 10175 times larger than Go (Perolat et al., 2022). Alternatively, methods
using populations of agents such as policy-space response oracles (Lanctot et al., 2017), AlphaStar’s
Nash league (Vinyals et al., 2019) or population-based training (Czempin & Gleave, 2022) may be
more robust than self-play, at the cost of greater computational requirements.

Finally, we found it harder to exploit agents that use search, with our attacks achieving a lower
win rate and requiring more computational resources. An interesting direction for future work is to
look for more effective and compute-efficient methods for attacking agents that use large amounts
of search, such as learning a computationally efficient model of the victim (Appendix B.5).
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7 CONCLUSION

We trained adversarial policies that are able to exploit a superhuman Go AI. Notably, the adversaries
do not win by playing a strong game of Go—in fact, they can be easily beaten by a human amateur.
Instead, the adversaries win by exploiting particular blind spots in the victim agent. This result
suggests that even highly capable agents can harbor serious vulnerabilities.

KataGo was published in 2019 and has since been used by many Go enthusiasts and professional
players as a playing partner and analysis engine (Wu, 2019). Despite this public scrutiny, to the best
of our knowledge the vulnerabilities discussed in this paper were never previously exploited. This
suggests that learning-based attacks like the ones developed in this paper may be an important tool
for uncovering hard-to-find vulnerabilities in AI systems.

Our results underscore that improvements in capabilities do not always translate into adequate ro-
bustness. Failures in Go AI systems are entertaining, but similar failures in safety-critical systems
like automated financial trading or autonomous vehicles could have dire consequences. We believe
that the ML research community should invest in improving robust training and adversarial defense
techniques in order to produce models with the high levels of reliability needed for safety-critical
systems.
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A RULES OF GO USED FOR EVALUATION

We evaluate all games with Tromp-Taylor rules (Tromp, 2014), after clearing opposite-color stones
within pass-alive groups computed by Benson’s algorithm (Benson, 1976). Games end after both
players pass consecutively, or once all points on the board belong to a pass-alive group or pass-alive
territory (defined in Appendix B.6). KataGo was configured to play using these rules in all our
matches against it. Indeed, these rules simply consist of KataGo’s version of Tromp-Taylor rules
with SelfPlayOpts enabled (Wu, 2021b). We use a fixed Komi of 6.5.

We chose these modified Tromp-Taylor rules because they are simple, and KataGo was trained on
(variants) of these rules so should be strongest playing with them. Although the exact rules used were
randomized during KataGo’s training, modified Tromp-Taylor made up a plurality of the training
data. That is, modified Tromp-Taylor is at least as likely as any other configuration seen during
training, and is more common than some other options.1

In particular, KataGo training randomized between area vs. territory scoring as well as ko, suicide,
taxation and button rules from the options described in Wu (2021b). These configuration settings
are provided as input to the neural network (Wu, 2019, Table 4), so the network should learn to play
appropriately under a range of rule sets. Additionally, during training komi was sampled randomly
from a normal distribution with mean 7 and standard deviation 1 (Wu, 2019, Appendix D).

A.1 DIFFERENCE FROM TYPICAL HUMAN PLAY

Although KataGo supports a variety of rules, all of them involve automatically scoring the board at
the end of the game. By contrast, when a match between humans end, the players typically confer
and agree which stones are dead, removing them from the board prior to scoring. If no agreement
can be reached then either the players continue playing the game until the situation is clarified, or a
referee arbitrates the outcome of the game.

KataGo has a variety of optional features to help it play well under human scoring rules. For exam-
ple, KataGo includes an auxiliary prediction head for whether stones are dead or alive. This enables
it to propose which stones it believes are dead when playing on online Go servers. Additionally, it
includes hard-coded features that can be enabled to make it play in a more human-like way, such as
friendlyPassOk to promote passing when heuristics suggest the game is nearly over.

These features have led some to speculate that the (undefended) victim passes prematurely in games
such as those in Figure 1.1b because it has learned or is configured to play in a more human-like
way. Prima facie, this view seems credible: a human player certainly might pass in a similar situ-
ation to our victim, viewing the game as already won under human rules. Although tempting, this
explanation is not correct: the optional features described above were disabled in our evaluation.
Therefore KataGo loses under the rules it was both trained and configured to use.

In fact, the majority of our evaluation used the match command to run KataGo vs. KataGo agents
which naturally does not support these human-like game play features. We did use the gtp com-
mand, implementing the Go Text Protocol (GTP), for a minority of our experiments, such as when
evaluating KataGo against other AI systems or human players and when evaluating our adversary
against KataGo with 107 visits. In those experiments, we configured gtp to follow the same Tromp-
Taylor rules described above, with any human-like extensions disabled.

B SEARCH ALGORITHMS

B.1 A REVIEW OF MONTE-CARLO TREE SEARCH (MCTS)

In this section, we review the basic Monte-Carlo Tree Search (MCTS) algorithm as used in AlphaGo-
style agents (Silver et al., 2016). This formulation is heavily inspired by the description of MCTS
given in Wu (2019).

1In private communication, the author of KataGo estimated that modified Tromp-Taylor made up a “a few
%” of the training data, “growing to more like 10% or as much as 20%” depending on differences such as
“self-capture and ko rules that shouldn’t matter for what you’re investigating, but aren’t fully the same rules as
Tromp-Taylor”.
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MCTS is an algorithm for growing a game tree one node at a time. It starts from a tree T0 with a
single root node x0. It then goes through N playouts, where every playout adds a leaf node to the
tree. We will use Ti to denote the game tree after i playouts, and will use xi to denote the node that
was added to Ti−1 to get Ti. After MCTS finishes, we have a tree TN with N + 1 nodes. We then
use simple statistics of TN to derive a sampling distribution for the next move.

B.1.1 MCTS PLAYOUTS

MCTS playouts are governed by two learned functions:

a. A value function estimator V̂ : T × X → R, which returns a real number V̂T (x) given a
tree T and a node x in T (where T is the set of all trees, and X is the set of all nodes). The
value function estimator is meant to estimate how good it is to be at x from the perspective
of the player to move at the root of the tree.

b. A policy estimator π̂ : T × X → P(X ), which returns a probability distribution over
possible next states π̂T (x) given a tree T and a node x in T . The policy estimator is meant
to approximate the result of playing the optimal policy from x (from the perspective of the
player to move at x).

For both KataGo and AlphaGo, the value function estimator and policy estimator are defined by two
deep neural network heads with a shared backbone. The reason that V̂ and π̂ also take a tree T as an
argument is because the estimators factor in the sequence of moves leading up to a node in the tree.

A playout is performed by taking a walk in the current game tree T . The walk goes down the tree
until it attempts to walk to a node x′ that either doesn’t exist in the tree or is a terminal node.2 At
this point the playout ends and x′ is added as a new node to the tree (we allow duplicate terminal
nodes in the tree).

Walks start at the root of the tree. Let x be where we are currently in the walk. The child c we walk
to (which may not exist in the tree) is given by

walkMCTS
T (x)

=


argmax

c
V̄T (c) + α · π̂T (x)[c] ·

√
ST (x)−1

1+ST (c) if root player to move at x,

argmin
c

V̄T (c)− α · π̂T (x)[c] ·
√
ST (x)−1

1+ST (c) if opponent player to move at x,
(1)

where the argmin and argmax are taken over all children reachable in a single legal move from x.
There are some new pieces of notation in Eq 1. Here is what they mean:

1. V̄T : X → R takes a node x and returns the average value of V̂T across all the nodes in the
subtree of T rooted at x (which includes x). In the special case that x is a terminal node,
V̄T (x) is the result of the finished game as given by the game-simulator. When x does not
exist in T , we instead use the more complicated formula3

V̄T (x) = V̄T (parT (x))− β ·
√ ∑
x′ ∈ childrenT (parT (x))

π̂T (parT (x))[x′] ,

where parT (x) is the parent of x in T and β is a constant that controls how much we
de-prioritize exploration after we have already done some exploration.

2. α ≥ 0 is a constant to trade off between exploration and exploitation.
3. ST : X → Z≥0 takes a node x and returns the size of the subtree of T rooted at x. Duplicate

terminal nodes are counted multiple times. If x is not in T , then ST (x) = 0.

In Eq 1, one can interpret the first term as biasing the search towards exploitation, and the second
term as biasing the search towards exploration. The form of the second term is inspired by UCB
algorithms.

2A “terminal” node is one where the game is finished, whether by the turn limit being reached, one player
resigning, or by two players passing consecutively.

3Which is used in KataGo and LeelaZero but not AlphaGo (Wu, 2019).
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B.1.2 MCTS FINAL MOVE SELECTION

The final move to be selected by MCTS is sampled from a distribution proportional to

STN
(c)1/τ , (2)

where c in this case is a child of the root node. The temperature parameter τ trades off between
exploration and exploitation.4

B.1.3 EFFICIENTLY IMPLEMENTING MCTS

To efficiently implement the playout procedure one should keep running values of V̄T and ST for
every node in the tree. These values should be updated whenever a new node is added. The standard
formulation of MCTS bakes these updates into the algorithm specification. Our formulation hides
the procedure for computing V̄T and ST to simplify exposition.

B.2 ADVERSARIAL MCTS: SAMPLE (A-MCTS-S)

In this section, we describe in detail how our Adversarial MCTS: Sample (A-MCTS-S) attack is
implemented. We build off of the framework for vanilla MCTS as described in Appendix B.1.

A-MCTS-S, just like MCTS, starts from a tree T0 with a single root node and adds nodes to the tree
via a series of N playouts. We derive the next move distribution from the final game tree TN by
sampling from the distribution proportional to

SA-MCTS
TN

(c)1/τ , where c is a child of the root node of TN . (3)

Here, SA-MCTS
T is a modified version of ST that measures the size of a subtree while ignoring non-

terminal victim-nodes (at victim-nodes it is the victim’s turn to move, and at self-nodes it is the
adversary’s turn to move). Formally, SA-MCTS

T (x) is the sum of the weights of nodes in the subtree
of T rooted at x, with weight function

wA-MCTS
T (x) =


1 if x is self-node,
1 if x is terminal victim-node,
0 if x is non-terminal victim-node.

(4)

We grow the tree by A-MCTS playouts. At victim-nodes, we sample directly from the victim’s
policy πv:

walkA-MCTS
T (x) := sample from πvT (x). (5)

This is a perfect model of the victim without search. However, it will tend to underestimate the
strength of the victim when the victim plays with search.

At self-nodes, we instead take the move with the best upper confidence bound just like in regular
MCTS:

walkA-MCTS
T (x) := argmax

c
V̄ A-MCTS
T (c) + α · π̂T (x)[c] ·

√
SA-MCTS
T (x)− 1

1 + SA-MCTS
T (c)

. (6)

Note this is similar to Eq 1 from the previous section. The key difference is that we use SA-MCTS
T (x)

(a weighted version of ST (x)) and V̄ A-MCTS
T (c) (a weighted version of V̄T (c)). Formally, V̄ A-MCTS

T (c)

is the weighted average of the value function estimator V̂T (x) across all nodes x in the subtree of T
rooted at c, weighted by wA-MCTS

T (x). If c does not exist in T or is a terminal node, we fall back to
the behavior of V̄T (c).

4See search.h::getChosenMoveLoc and searchresults.cpp::getChosenMoveLoc to
see how KataGo does this.
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B.3 ADVERSARIAL MCTS: MORE ACCURATE SAMPLING (A-MCTS-S++)

When computing the policy estimator π̂ for the root node of a MCTS search (and when playing
without tree-search, i.e. "policy-only"), KataGo will pass in different rotated/reflected copies of
the game-board and average their results in order to obtain a more stable and symmetry-equivariant
policy. That is

π̂root =
1

|S|
∑

g∈S⊆D4

g−1 ◦ π̂ ◦ g,

where D4 is the symmetry group of a square (with 8 symmetries) and S is a randomly sampled
subset of D4.5

In A-MCTS, we ignore this symmetry averaging because modeling it would inflate the cost of simu-
lating our victim by up to a factor of 8. By contrast, A-MCTS-S++ accurately models this symmetry
averaging at the cost of increased computational requirements.

B.4 ADVERSARIAL MCTS: RECURSIVE (A-MCTS-R)

In A-MCTS-R, we simulate the victim by starting a new (recursive) MCTS search. We use this sim-
ulation at victim-nodes, replacing the victim sampling step (Eq. 5) in A-MCTS-S. This simulation
will be a perfect model of the victim when the MCTS search is configured to use the same number
of visits and other settings as the victim. However, since MCTS search is stochastic, the (random)
move taken by the victim may still differ from that predicted by A-MCTS-R. Moreover, in practice,
simulating the victim with its full visit count at every victim-node in the adversary’s search tree can
be prohibitively expensive.

B.5 ADVERSARIAL MCTS: VICTIM MODEL (A-MCTS-VM)

In A-MCTS-VM, we propose fine-tuning a copy of the victim network to predict the moves played
by the victim in games played against the adversarial policy. This is similar to how the victim
network itself was trained, but may be a better predictor as it is trained on-distribution. The adversary
follows the same search procedure as in A-MCTS-S but samples from this predictive model instead
of the victim.

A-MCTS-VM has the same inference complexity as A-MCTS-S, and is much cheaper than A-
MCTS-R. However, it does impose a slightly greater training complexity due to the need to train
an additional network. Additionally, A-MCTS-VM requires white-box access in order to initialize
the predictor to the victim network.

In principle, we could randomly initialize the predictor network, making the attack black-box. No-
tably, imitating the victim has led to successful black-box adversarial policy attacks in other do-
mains (Bui et al., 2022). However, a randomly initialized predictor network would likely need a
large number of samples to imitate the victim. Bui et al. (2022) use tens of millions of time steps
to imitate continuous control policies, and we expect this number to be still larger in a game as
complex as Go.

B.6 PASS-ALIVE DEFENSE

Our hard-coded defense modifies KataGo’s C++ code to directly remove passing moves from con-
sideration after MCTS, setting their probability to zero. Since the victim must eventually pass in
order for the game to end, we allow passing to be assigned nonzero probability when there are no
legal moves, or when the only legal moves are inside the victim’s own pass-alive territory. We also
do not allow the victim to play within its own pass-alive territory—otherwise, after removing highly
confident pass moves from consideration, KataGo may play unconfident moves within its pass-alive
territory, losing liberties and eventually losing the territory altogether. We use a pre-existing func-
tion inside the KataGo codebase, Board::calculateArea, to determine which moves are in
pass-alive territory.

5See searchhelpers.cpp::initNodeNNOutput for how the symmetry averaging is implemented
in KataGo. The size of |S| is configured via the KataGo parameter rootNumSymmetriesToSample.
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Figure B.1: Black moves next in this game. There is a seki in the bottom left corner of the board.
Neither black nor white should play in either square marked with ∆, or else the other player will
play in the other square and capture the opponent’s stones. If Latest with 128 visits plays as
black, it will pass. On the other hand, Latestdef with 128 visits playing as black will play in one
of the marked squares and lose its stones.

The term “pass-alive territory” is defined in the KataGo rules as follows (Wu, 2021b):

A {maximal-non-black, maximal-non-white} region R is pass-alive-territory for
{Black, White} if all {black, white} regions bordering it are pass-alive-groups,
and all or all but one point in R is adjacent to a {black, white} pass-alive-group,
respectively.

The notion “pass-alive group” is a standard concept in Go (Wu, 2021b):

A black or white region R is a pass-alive-group if there does not exist any sequence
of consecutive pseudolegal moves of the opposing color that results in emptying
R.

KataGo uses an algorithm introduced by Benson (1976) to efficiently compute the pass-alive status
of each group. For more implementation details, we encourage the reader to consult the official
KataGo rules and the KataGo codebase on GitHub.

B.6.1 VULNERABILITY OF DEFENSE IN SEKI SITUATIONS

Training against defended victims resulted in the cyclic-adversary which successfully exploits both
the defended Latestdef and the undefended Latest, but adding the defense to victims in fact
adds a vulnerability that undefended victims do not have. Because defended victims are usually not
allowed to pass, they blunder seki situations where it is better to pass than play.

For instance, consider the board shown in Figure B.1. Black is next to play. At this point, the
game is over unless one of the players severely blunders. White cannot capture black’s large group
stretching from the top-left corner to the top-right corner, and black cannot capture white’s two large
groups. There is a seki in the bottom-left corner of the board, where neither player wants to play in
either of the two squares marked with ∆ since then the other player could play in the other marked
square and capture the opponent’s stones. Black is winning and should pass and wait for white to
also pass or resign. Indeed, Latest with 128 visits playing as black passes and eventually wins by
8.5 points.

Latestdef, however, is not allowed to pass, and instead plays in one of the squares marked by ∆.
White can then play in the other marked square to capture black’s stones. Then white owns all the
territory in the bottom-left corner and wins by 25.5 points.
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Hyperparameter Value Different from KataGo?
Batch Size 256 Same
Learning Rate Scale of Hard-coded Schedule 1.0 Same
Minimum Rows Before Shuffling 250,000 Same
Data Reuse Factor 4 Similar
Adversary Visit Count 600 Similar
Adversary Network Architecture b6c96 Different
Gatekeeping Disabled Different
Auto-komi Disabled Different
Komi randomization Disabled Different
Handicap Games Disabled Different
Game Forking Disabled Different
Cheap Searches Disabled Different

Table C.1: Key hyperparameter settings for our adversarial training runs.

We discovered this weakness of the pass-alive defense when we trained an adversary against
Latestdef with the adversary’s weights initialized to cp63, an early KataGo checkpoint. The
adversary consistently set up similar seki situations to defeat Latestdef, but it would lose against
the undefended Latest.

C HYPERPARAMETER SETTINGS

We enumerate the key hyperparameters used in our training run in Table C.1. For brevity, we omit
hyperparameters that are the same as KataGo defaults and have only a minor effect on performance.

The key difference from standard KataGo training is that our adversarial policy uses a b6c96 net-
work architecture, consisting of 6 blocks and 96 channels. By contrast, the victims we attack range
from b6c96 to b40c256 in size. We additionally disable a variety of game rule randomizations
that help make KataGo a useful AI teacher in a variety of settings but are unimportant for our attack.
We also disable gatekeeping, designed to stabilize training performance, as our training has proved
sufficiently stable without it.

We train at most 4 times on each data row before blocking for fresh data. This is comparable to the
original KataGo training run, although the ratio during that run varied as the number of asynchronous
selfplay workers fluctuated over time. We use an adversary visit count of 600, which is comparable
to KataGo, though the exact visit count has varied between their training runs.

In evaluation games we use a single search thread for KataGo unless otherwise specified. We used
10 and 1024 search threads for evaluation of victims with 106 and 107 visits in order to ensure games
complete in a reasonable time frame. Holding visit count fixed, using more search threads tends to
decrease the strength of an agent. However increasing search threads enables more visits to be used
in practice, ultimately enabling higher agent performance.

C.1 CONFIGURATION FOR CURRICULUM AGAINST VICTIM WITHOUT SEARCH

In Section 5.1, we train using a curriculum over checkpoints, moving on to the next checkpoint when
the adversary’s win rate exceeds 50%. We ran the curriculum over the following checkpoints, all
without search:

1. Checkpoint 127: b20c256x2-s5303129600-d1228401921 (cp127).

2. Checkpoint 200: b40c256-s5867950848-d1413392747.

3. Checkpoint 300: b40c256-s7455877888-d1808582493.

4. Checkpoint 400: b40c256-s9738904320-d2372933741.

5. Checkpoint 469: b40c256-s11101799168-d2715431527.

6. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latest).
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These checkpoints can all be obtained from Wu (2022).

We start with checkpoint 127 for computational efficiency: it is the strongest KataGo network of
its size, 20 blocks or b20. The subsequent checkpoints are all 40 block networks, and are approx-
imately equally spaced in terms of training time steps. We include checkpoint 469 in between 400
and 505 for historical reasons: we ran some earlier experiments against checkpoint 469, so it is
helpful to include checkpoint 469 in the curriculum to check performance is comparable to prior
experiments.

Checkpoint 505 is the latest confidently rated network. There are some more recent, larger networks
(b60 = 60 blocks) that may have an improvement of up to 150 Elo. However, they have had too few
rated games to be confidently evaluated.

C.2 CONFIGURATION FOR CURRICULUM AGAINST VICTIM WITH PASSING DEFENSE

In Section 5.2, we ran the curriculum over the following checkpoints, all with the pass-alive defense
enabled:

1. Checkpoint 39: b6c96-s45189632-d6589032 (cp39def), no search

2. Checkpoint 49: b6c96-s69427456-d10051148, no search.

3. Checkpoint 63: b6c96-s175395328-d26788732, no search.

4. Checkpoint 79: b10c128-s197428736-d67404019, no search.

5. Checkpoint 99: b15c192-s497233664-d149638345, no search.

6. Checkpoint 127: b20c256x2-s5303129600-d1228401921, no search
(cp127def).

7. Checkpoint 200: b40c256-s5867950848-d1413392747, no search

8. Checkpoint 300: b40c256-s7455877888-d1808582493, no search.

9. Checkpoint 400: b40c256-s9738904320-d2372933741, no search.

10. Checkpoint 469: b40c256-s11101799168-d2715431527, no search.

11. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), no
search (1 visit).

12. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), 2 visits.

13. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), 4 visits.

14. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), 8 visits.

15. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), 16 vis-
its.

16–20. ...

21. b40c256-s11840935168-d2898845681 (Latestdef), 1024 visits.

22. b40c256-s11840935168-d2898845681 (Latestdef), 1600 visits.

23. b40c256-s11840935168-d2898845681 (Latestdef), 4096 visits.

24. b40c256-s11840935168-d2898845681 (Latestdef), 8192 visits.

25–27. ...

28. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latestdef), 217 =
131072 visits.

We move on to the next checkpoint when the adversary’s win rate exceeds 50% until we reach
Latestdef with 2 visits, at which point we increase the win rate threshold to 75%.
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D COMPUTE ESTIMATES

In this section, we estimate the amount of compute that went into training our adversary and the
amount of compute that went into training KataGo.

We estimate it takes ~20.4 V100 GPU days to train our strongest pass-adversary, ~2223.2 V100 GPU
days to train our strongest cyclic-adversary, and at least 15,881 V100 GPU days to train the Latest
KataGo checkpoint. Thus our pass-adversary and cyclic-adversary can be trained using 0.13% and
14.0% (respectively) of the compute it took to train KataGo. Moreover, an earlier checkpoint of the
cyclic-adversary trained using only 7.6% of the compute to train KataGo already achieves a 94%
win rate against Latestdef with 4096 visits.

As another point of reference, our strongest pass-adversary took 9.18×104 self-play games to train,
our strongest cyclic-adversary took 1.01×106 self-play games to train, and Latest took 5.66×107

self-play games to train.6

Note that training our cyclic-adversary used 14% of Latest’s compute, but less than 2% of
Latest’s games. This is because our cyclic-adversary was trained against high-visit count versions
of Latest towards the end of its curriculum, and the compute required to generate a victim-play
game scales proportionally with the amount of victim visits. See Figure D.1 for a visual illustration
of this effect.

D.1 ESTIMATING THE COMPUTE USED BY OUR ATTACK

To train our adversaries, we used A4000, A6000, A100 40GB, and A100 80GB GPUs. The primary
cost of training is in generating victim-play games, so we estimated GPU-day conversions between
these GPUs by benchmarking how fast the GPUs generated games.

We estimate that one A4000 GPU-day is 0.627 A6000 GPU-days, one A100 40GB GPU-day is
1.669 A6000 GPU-days, and one A100 80GB GPU-day is 1.873 A6000 GPU-days. We estimate
one A6000 GPU-day is 1.704 V100 GPU-days.

Figure D.1 plots the amount of compute used against the number of adversary training steps. To
train the pass-adversary, we used 12.001 A6000 GPU-days, converting to 20.4 V100 GPU-days. To
train the cyclic-adversary, we used 61.841 A4000 GPU-days, 348.582 A6000 GPU-days, 299.651
A100 40GB GPU-days, and 222.872 A100 80GB GPU-days, converting to 2223.2 V100 GPU-days.

The cyclic-adversary was already achieving high win rates against Latestdef with smaller
amounts of training. In Figure D.3, earlier checkpoints of the cyclic-adversary achieved a win
rate of 64.6% against Latestdef with 4096 victim visits using 749.6 V100 GPU-days of training
(4.7% of the compute to train Latest) and a win rate of 94% using 1206.2 V100 GPU-days of
training (7.6% of the compute to train Latest), compared to a win rate of 95.7% using 2223.2
V100 GPU-days of training.

6To estimate the number of games for KataGo, we count the number of training
games at katagotraining.org/games (only for networks prior to Latest) and
katagoarchive.org/g170/selfplay/index.html.
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Figure D.1: The compute used for adversary training (y-axis) as a function of the number of ad-
versary training steps taken (x-axis). The plots here mirror the structure of Figure F.1 and Fig-
ure 5.1. The compute of the pass-adversary is a linear function of its training steps because the pass-
adversary was trained against victims of similar size, all of which used no search (Appendix C.1).
In contrast, the compute of the cyclic-adversary is highly non-linear due to training against a wider
range of victim sizes and the exponential ramp up of victim search at the end of its curriculum
(Appendix C.2).
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Figure D.2: The win rate achieved by the pass-adversary throughout training (y-axis) as a function
of the training compute used (x-axis). This figure is the same as Figure F.1 but with V100 GPU-days
on the x-axis instead of adversary training steps.
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Figure D.3: The win rate achieved by the cyclic-adversary throughout training (y-axis) as a function
of the training compute used (x-axis). This figure is the same as Figure 5.1 but with V100 GPU-days
on the x-axis instead of adversary training steps.
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Network FLOPs / forward pass

b6c96 7.00× 108

b10c128 2.11× 109

b15c192 7.07× 109

b20c256 1.68× 1010

b40c256 3.34× 1010

Table D.1: Inference compute costs for different KataGo neural network architectures. These costs
were empirically measured using ptflops and thop, and the reported numbers are averaged over
the two libraries.

D.2 ESTIMATING THE COMPUTE USED TO TRAIN THE LATEST KATAGO CHECKPOINT

The Latest KataGo checkpoint was obtained via distributed (i.e. crowdsourced) training starting
from the strongest checkpoints in KataGo’s “third major run” (Wu, 2021a). The KataGo repository
documents the compute used to train the strongest network of this run as: 14 days of training with
28 V100 GPUs, 24 days of training with 36 V100 GPUs, and 119 days of training with 46 V100
GPUs. This totals to 14× 28 + 24× 36 + 119× 46 = 6730 V100 GPU days of compute.

To lower-bound the remaining compute used by distributed training, we make the assumption that
the average row of training-data generated during distributed training was more expensive to gener-
ate than the average row of data for the “third major run”. We justify this assumption based on the
following factors:7

1. The “third major run” used b6, b10, b20, b30, and b40 nets while distributed training
used only b40 nets and larger, with larger nets being more costly to run (Table D.1).

2. The “third major run” used less search during self-play than distributed training. Source:
the following message from David Wu (the creator and primary developer of KataGo).

KataGo used 600 full / 100 cheap [visits] for roughly the first 1-2 days of training
(roughly up through b10c128 and maybe between 1/2 and 1/4 of b15c192), 1000
full / 200 cheap [visits] for the rest of g170 (i.e. all the kata1 models that were
imported from the former run g170 that was done on private hardware alone,
before that run became the prefix for the current distributed run kata1), and then
1500 full / 250 cheap [visits] for all of distributed training so far.

Latest was trained with 2,898,845,681 data rows, while the strongest network of the “third major
run” used 1,229,425,124 data rows. We thus lower bound the compute cost of training Latest at
2898845681/1229425124× 6730 ≈ 15881 V100 GPU days.

E STRENGTH OF GO AI SYSTEMS

In this section, we estimate the strength of KataGo’s Latest network with and without search and
the AlphaZero agent from Schmid et al. (2021) playing with 800 visits.

E.1 STRENGTH OF KATAGO WITHOUT SEARCH

First, we estimate the strength of KataGo’s Latest agent playing without search. We use two
independent methodologies and conclude that Latest without search is at the level of a weak
professional.

7The biggest potential confounding factor is KataGo’s neural network cache, which (per David Wu in private
comms) “is used if on a future turn you visit the same node that you already searched on the previous turn, or
if multiple move sequences in a search lead to the same position”. Moreover, “this [cache] typically saves
somewhere between 20% and 50% of the cost of a search relative to a naive estimate based on the number of
visits”. It is possible that distributed training has a significantly higher cache hit-rate than the “third major run”,
in which case our bound might be invalid. We assume that the stated factors are enough to overcome this and
other potential confounding effects to yield a valid lower-bound.
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KGS handle Is KataGo? KGS rank EGF rank EGD Profile
Fredda 22 25 Fredrik Blomback
cheater 25 6 Pavol Lisy
TeacherD 26 39 Dominik Boviz
NeuralZ03 X 31
NeuralZ05 X 32
NeuralZ06 X 35
ben0 39 16 Benjamin Drean-Guenaizia
sai1732 40 78 Alexandr Muromcev
Tichu 49 64 Matias Pankoke
Lukan 53 10 Lukas Podpera
HappyLook 54 49 Igor Burnaevskij

Table E.1: Rankings of various humans and no-search KataGo bots on KGS (KGS, 2022b). Hu-
man players were selected to be those who have European Go Database (EGD) profiles (EGD,
2022), from which we obtained the European Go Federation (EGF) rankings in the table. The
KataGo bots are running with a checkpoint slightly weaker than Latest, specifically Checkpoint
469 or b40c256-s11101799168-d2715431527 (Rob, 2022). Per Wu (2022), the checkpoint
is roughly 10 Elo weaker than Latest.

One way to gauge the performance of Latest without search is to see how it fares against hu-
mans on online Go platforms. Per Table E.1, on the online Go platform KGS, a slightly earlier
(and weaker) checkpoint than Latest playing without search is roughly at the level of a top-100
European player. However, some caution is needed in relying on KGS rankings:

1. Players on KGS compete under less focused conditions than in a tournament, so they may
underperform.

2. KGS is a less serious setting than official tournaments, which makes cheating (e.g., using
an AI) more likely. Thus human ratings may be inflated.

3. Humans can play bots multiple times and adjust their strategies, while bots remain static.
In a sense, humans are able to run adversarial attacks on the bots, and are even able to do
so in a white-box manner since the source code and network weights of a bot like KataGo
are public.

Another way to estimate the strength of Latest without search is to compare it to other AIs with
known strengths and extrapolate performance across different amounts of search. Our analysis criti-
cally assumes the transitivity of Elo at high levels of play. We walk through our estimation procedure
below:

1. Our anchor is ELF OpenGo at 80,000 visits per move using its “prototype” model, which
won all 20 games played against four top-30 professional players, including five games
against the now world number one (Tian et al., 2019). We assume that ELF OpenGo at
80,000 visits is strongly superhuman, meaning it has a 90%+ win rate over the strongest
current human.8 At the time of writing, the top ranked player on Earth has an Elo of 3845
on goratings.org (Coulom, 2022). Under our assumption, ELF OpenGo at 80,000 visits per
move would have an Elo of 4245+ on goratings.org.

2. ELF OpenGo’s “final” model is about 150 Elo stronger than its prototype model (Tian et al.,
2019), giving an Elo of 4395+ at 80,000 visits per move.

3. The strongest network in the original KataGo paper was shown to be slightly stronger
than ELF OpenGo’s final network (Wu, 2019, Table 1) when both bots were run at 1600
visits per move. From Figure E.1, we see that the relative strengths of KataGo networks
is maintained across different amounts of search. We thus extrapolate that the strongest

8This assumption is not entirely justified by statistics, as a 20:0 record only yields a 95% binomial lower
confidence bound of an 83.16% win rate against top-30 professional players in 2019. It does help however that
the players in question were rated #3, #5, #23, and #30 in the world at the time.
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network in the original KataGo paper with 80,000 visits would also have an Elo of 4395+
on goratings.org.

4. The strongest network in the original KataGo paper is comparable to the
b15c192-s1503689216-d402723070 checkpoint on katagotraining.org (Wu,
2022). We dub this checkpoint Original. In a series of benchmark games, we found
that Latest without search won 27/3200 games against Original with 1600 visits.
This puts Original with 1600 visits ~823 Elo points ahead of Latest without search.

5. Finally, log-linearly extrapolating the performance of Original from 1600 to 80,000
visits using Figure E.1 yields an Elo difference of ~834 between the two visit counts.

6. Combining our work, we get that Latest without search is roughly 823 + 834 = ~1657
Elo points weaker than ELF OpenGo with 80,000 visits. This would give Latest without
search an Elo rating of 4395 − 1657 = ~2738 on goratings.org, putting it at the skill level
of a weak professional.

As a final sanity check on these calculations, the raw AlphaGo Zero neural network was reported to
have an Elo rating of 3,055, comparable to AlphaGo Fan’s 3,144 Elo.9 Since AlphaGo Fan beat Fan
Hui, a 2-dan professional player (Silver et al., 2017), this confirms that well-trained neural networks
can play at the level of human professionals. Although there has been no direct comparison between
KataGo and AlphaGo Zero, we would expect them to be not wildly dissimilar. Indeed, if anything
the latest versions of KataGo are likely stronger, benefiting from both a large distributed training run
(amounting to over 10,000 V100 GPU days of training) and four years of algorithmic progress.

E.2 STRENGTH OF KATAGO WITH SEARCH

In the previous section, we established that Latest without search is at the level of a weak profes-
sional with rating around ~2738 on goratings.org.

Assuming Elo transitivity, we can estimate the strength of Latest by utilizing Figure E.1. Our eval-
uation results tell us that Latest with 8 playouts/move is roughly 325 Elo stronger than Latest
with no search. This puts Latest with 8 playouts/move at an Elo of ~3063 on goratings.org—
within the top 500 in the world. Beyond 128 playouts/move, Latest plays at a superhuman level.
Latest with 512 playouts/move, for instance, is roughly 1762 Elo stronger than Latest with no
search, giving an Elo of 4500, over 600 points higher than the top player on goratings.org.

E.3 STRENGTH OF ALPHAZERO

Prior work from Timbers et al. (2022) described in Section 2 exploited the AlphaZero replica from
Schmid et al. (2021) playing with 800 visits. Unfortunately, this agent has never been evaluated
against KataGo or against any human player, making it difficult to directly compare its strength to
those of our victims. Moreover, since it is a proprietary model, we cannot perform this evaluation
ourselves. Accordingly, in this section we seek to estimate the strength of these AlphaZero agents
using three anchors: GnuGo, Pachi and Lee Sedol. Our estimates suggest AlphaZero with 800 visits
ranges in strength from the top 300 of human players, to being slightly superhuman.

We reproduce relevant Elo comparisons from prior work in Table E.2. In particular, Table 4 of
Schmid et al. (2021) compares the victim used in Timbers et al. (2022), AlphaZero(s=800,t=800k),
to two open-source AI systems, GnuGo and Pachi. It also compares it to a higher visit count version
AlphaZero(s=16k, t=800k), from which we can compare using Silver et al. (2018) to AG0 3-day and
from there using Silver et al. (2017) to AlphaGo Lee which played Lee Sedol.

Our first strength evaluation uses the open-source anchor point provided by Pachi(s=10k). The au-
thors of Pachi (Baudiš & Gailly, 2012) report it achieves a 2-dan ranking on KGS (Baudiš & Gailly,
2020) when playing with 5000 playouts and using up to 15,000 when needed. We conservatively
assume this corresponds to a 2-dan EGF player (KGS rankings tend to be slightly inflated compared

9The Elo scale used in Silver et al. (2017) is not directly comparable to our Elo scale, although they should
be broadly similar as both are anchored to human players.
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Figure E.1: Elo ranking (y-axis) of networks (different colored lines) by visit count (x-axis). The
lines are approximately linear on a log x-scale, with the different networks producing similarly
shaped lines vertically shifted. This indicates that there is a consistent increase in Elo, regardless of
network strength, that is logarithmic in visit count. Elo ratings were computed from self-play games
among the networks using a Bayesian Elo estimation algorithm (Haoda & Wu, 2022).

Agent Victim? Elo (rel GnuGo) Elo (rel victim)

AlphaZero(s=16k, t=800k) +3139 +1040
AG0 3-day(s=16k) +3069 +970
AlphaGo Lee(time=1sec) +2308 +209
AlphaZero(s=800,t=800k) X +2099 0
Pachi(s=100k) +869 -1230
Pachi(s=10k) +231 -1868
GnuGo(l=10) +0 -2099

Table E.2: Relative Elo ratings for AlphaZero, drawing on information from Schmid et al. (2021,
Table 4), Silver et al. (2018) and Silver et al. (2017). s stands for number of steps, time for thinking
time, and t for number of training steps.
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to EGF), giving Pachi(s=10k) an EGF rating of 2200 GoR.10 The victim AlphaZero(s=800,t=800k)
is 1868 Elo stronger than Pachi(s=10k), so assuming transitivity, AlphaZero(s=800,t=800k) would
have an EGF rating of 3063 GoR.11 The top EGF professional Ilya Shiskin has an EGF rating of
2830 GoR (Federation, 2022) at the time of writing, and 2979 Elo on goratings.org (Coulom, 2022).
Using Ilya as an anchor, this would give AlphaZero(s=800,t=800k) a rating of 3813 Elo on gorat-
ings.org. This is near-superhuman, as the top player at the time of writing has an rating of 3845 Elo
on goratings.org.

However, some caution is needed here—the Elo gap between Pachi(s=10k) and Alp-
haZero(s=800,t=800k) is huge, making the exact value unreliable. The gap from Pachi(s=100k)
is smaller, however unfortunately to the best of our knowledge there is no public evaluation of Pachi
at this strength. However, the results in Baudiš & Gailly (2020) strongly suggest it would perform
at no more than a 4-dan KGS level, or at most a 2400 GoR rating on EGF.12 Repeating the analysis
above then gives AlphaZero(s=800,t=800k) a rating of 2973 GoR on EGF and a rating of 3419 Elo
on goratings.org. This is a step below superhuman level, and is roughly at the level of a top-100
player in the world.

If we instead take GnuGo level 10 as our anchor, we get a quite different result. It is known to
play between 10 and 11kyu on KGS (KGS, 2022a), or at an EGF rating of 1050 GoR. This gives
AlphaZero(s=800,t=800k) an EGF rating of 2900 GoR, or a goratings.org rating of 3174 Elo. This
is still strong, in the top ~300 of world players, but is far from superhuman.

The large discrepancy between these results led us to seek a third anchor point: how AlphaZero
performed relative to previous AlphaGo models that played against humans. A complication is
that the version of AlphaZero that Timbers et al. use differs from that originally reported in Silver
et al. (2018), however based on private communication with Timbers et al. we are confident the
performance is comparable:

These agents were trained identically to the original AlphaZero paper, and
were trained for the full 800k steps. We actually used the original code, and did
a lot of validation work with Julian Schrittweiser & Thomas Hubert (two of the
authors of the original AlphaZero paper, and authors of the ABR paper) to verify
that the reproduction was exact. We ran internal strength comparisons that match
the original training runs.

Table 1 of Silver et al. (2018) shows that AlphaZero is slightly stronger than AG0 3-day (AlphaGo
Zero, after 3 days of training), winning 60 out of 100 games giving an Elo difference of +70. This
tournament evaluation was conducted with both agents having a thinking time of 1 minute. Table S4
from Silver et al. (2018) reports that 16k visits are performed per second, so the tournament evalu-
ation used a massive 960k visits–significantly more than reported on in Table E.2. However, from
Figure E.1 we would expect the relative Elo to be comparable between the two systems at different
visit counts, so we extrapolate AG0 3-day at 16k visits as being an Elo of 3139−70 = 3069 relative
to GnuGo.

10GoR is a special rating system (distinct from Elo) used by the European Go Federation. The probability

that a player A with a GoR of GA beats a player B with a GoR of GB is 1/(1 +
(

3300−GA
3300−GB

)7

).
11This is a slightly nontrivial calculation: we first calculated the win-probability x implied by an 1868 Elo

difference, and then calculated the GoR of AlphaZero(s=800,t=800k) as the value that would achieve a win-
probability of x against Pachi(s=10k) with 2200 GoR. We used the following notebook to perform this and
subsquent Elo-GoR conversion calculations: Colab notebook link.

12In particular, Baudiš & Gailly (2020) report that Pachi achieves a 3-dan to 4-dan ranking on KGS when
playing on a cluster of 64 machines with 22 threads, compared to 2-dan on a 6-core Intel i7. Figure 4 of Baudiš
& Gailly (2012) confirms playouts are proportional to the number of machines and number of threads, and
we’d therefore expect the cluster to have 200x as many visits, or around a million visits. If 1 million visits
is at best 4-dan, then 100,000 visits should be weaker. However, there is a confounder: the 1 million visits
was distributed across 64 machines, and Figure 4 shows that distributed playouts do worse than playouts on
a single machine. Nonetheless, we would not expect this difference to make up for a 10x difference in visits.
Indeed, Baudiš & Gailly (2012, Figure 4) shows that 1 million playouts spread across 4 machines (red circle)
is substantially better than 125,000 visits on a single machine (black circle), achieving an Elo of around 150
compared to -20.
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Figure 3a from Silver et al. (2017) report that AG0 3-day achieves an Elo of around 4500. This
compares to an Elo of 3,739 for AlphaGo Lee. To the best of our knowledge, the number of visits
achieved per second of AlphaGo Lee has not been reported. However, we know that AG0 3-day
and AlphaGo Lee were given the same amount of thinking time, so we can infer that AlphaGo Lee
has an Elo of −761 relative to AG0 3-day. Consequently, AlphaGo Lee(time=1sec) thinking for 1
second has an Elo relative to GnuGo of 3069− 761 = 2308.

Finally, we know that AlphaGo Lee beat Lee Sedol in four out of five matches, giving AlphaGo Lee
a +240 Elo difference relative to Lee Sedol, or that Lee Sedol has an Elo of 2068 relative to Gnu Go
level 10. This would imply that the victim is slightly stronger than Lee Sedol. However, this result
should be taken with some caution. First, it relies on transitivity through many different versions of
AlphaGo. Second, the match between AlphaGo Lee and Lee Sedol was played under two hours of
thinking time with 3 byoyomi periods of 60 seconds per move Silver et al. (2018, page 30). We are
extrapolating from this to some hypothetical match between AlphaGo Lee and Lee Sedol with only
1 second of thinking time per player. Although the Elo rating of Go AI systems seems to improve
log-linearly with thinking time, it is unlikely this result holds for humans.

F MORE EVALUATIONS OF ADVERSARIES AGAINST KATAGO

In this section we provide more evaluations of our attacks from Section 5.

F.1 EVOLUTION OF PASS-ADVERSARY OVER TRAINING

In Figure F.1 we evaluate the pass-adversary from Section 5.1 against cp127 and Latest through-
out the training process of the adversary. We find the pass-adversary attains a large (>90%) win rate
against both victims throughout much of training. However, over time the adversary overfits to
Latest, with the win rate against cp127 falling to around 22%.

In Figure F.2, the context is the same as the preceding figure but instead of win rate we report the
margin of victory. In the win-only and loss-only subfigures, we plot only points with at least 5 wins
or losses. Note that standard Go has no incentives for winning by a larger margin; we examine these
numbers for solely additional insight into the training process of our adversary. We see that even
after win rate is near 100% against Latest, the win margin continues to increase, suggesting the
adversary is still learning.

F.2 SCORE MARGIN OF THE CYCLIC-ADVERSARY

In Figure F.3, we show the margin of victory over the training process of the cyclic-adversary from
Section 5.2 against victims with the pass-alive defense. The corresponding win rate is shown in
Figure 5.1. Compared to Figure F.2, we see that the margin of victory is typically larger. This is
likely because the cyclic-adversary either captures a large group or gives up almost everything in a
failed attempt. After approximately 250 million training steps, the margins are relatively stable, but
we do see a gradual reduction in the loss margin against Latestdef with 4096 visits (preceding the
eventual spike in win rate against that victim).

F.3 PASS-ADVERSARY VS. VICTIMS WITH SEARCH

We evaluate the ability of the pass-adversary to exploit Latest playing with search (the pass-
adversary was trained only against no-search victims). Although the pass-adversary with A-MCTS-
S and 200 visits achieves a win rate of 100% over 160 games against Latest without search, in
Figure F.4a we find the win rate drops to 15.3% at 8 victim visits. However, A-MCTS-S models
the victim as having no search at both training and inference time. We also test A-MCTS-R, which
correctly models the victim at inference by performing an MCTS search at each victim-node in
the adversary’s tree. We find that our pass-adversary with A-MCTS-R performs somewhat better,
obtaining an 87.8% win rate against Latest with 8 visits, but performance drops to 8% at 16 visits.

Of course, A-MCTS-R is more computationally expensive than A-MCTS-S. An alternative way to
spend our inference-time compute budget is to perform A-MCTS-S with a greater adversary visit
count. We see in Figure F.4b, however, that this does not increase the win rate of the pass-adversary

29



Preprint

1 2 3 4 5 6

Adversary training steps ×107

0

20

40

60

80

100
A

dv
er

sa
ry

w
in

ra
te

%

cp127 Latest

Figure F.1: The win rate (y-axis) of the pass-adversary from Section 5.1 over time (x-axis) against
the cp127 and Latest victim policy networks playing without search. The strongest adversary
checkpoint (marked �) wins 1047/1048 games against Latest. The adversary overfits to Latest,
winning less often against cp127 over time. Shaded interval is a 95% Clopper-Pearson interval over
n = 50 games per checkpoint. The adversarial policy is trained with a curriculum, starting from
cp127 and ending at Latest (see Appendix C.1). Vertical dashed lines denote switches to a later
victim policy.

against Latest with 8 visits. It seems that Latest at a modest number of visits quickly becomes
resistant to our pass-adversary, no matter how we spend our inference-time compute budget.

F.4 TRANSFERRING ATTACKS BETWEEN CHECKPOINTS

In Figure F.5, we train adversaries against the Latest and cp127 checkpoints respectively and
evaluate against both checkpoints. An adversary trained against Latest does better against
Latest than cp127, despite Latest being a stronger agent. The converse also holds: an agent
trained against cp127 does better against cp127 than Latest. This pattern holds across visit
counts. These results support the conclusion that different checkpoints have unique vulnerabilities.

F.5 BASELINE ATTACKS

We also test hard-coded baseline adversarial policies. These baselines were inspired by the behav-
ior of our trained adversary. The Edge attack plays random legal moves in the outermost `∞-box
available on the board. The Spiral attack is similar to the Edge attack, except that it plays moves in
a deterministic counterclockwise order, forming a spiral pattern. The Random attack plays unifor-
maly random legal moves. Finally, we also implement Mirror Go, a classic strategy that plays the
opponent’s last move reflected about the y = x diagonal. If the opponent plays on y = x, Mirror
Go plays that move reflected along the y = −x diagonal. If the mirrored vertex is taken, Mirror Go
plays the closest legal move by `1 distance.

For each of these baseline policies, if the victim passes, then the policy will pass to end the game if
passing is a winning move.

In Figure F.6, we plot the win rate and win margin of the baseline attacks against the KataGo victim
Latest. The edge attack is the most successful, achieving a 45% win rate when Latest plays as
black with no search. None of the attacks work well once Latest is playing with at least 4 visits.
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(a) Final score margin from adversary’s perspective (i.e. adversary score− victim score) on y-axis vs. adversary
training steps on x-axis.
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(b) Score margin, restricted to games adversary won.
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(c) Score margin, restricted to games adversary lost.

Figure F.2: We evaluate the average margin of victory for the pass-adversary from Section 5.1
against Latest without search as the training process progresses. Shaded regions are 95% T-
intervals over n = 50 games per checkpoint.
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(b) Score margin, restricted to games adversary won.
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Figure F.3: We evaluate the average margin of victory for the cyclic-adversary from Section 5.2
against Latest with 2048 visits as the training process progresses. Shaded regions are 95% T-
intervals over n = 50 games per checkpoint.
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Figure F.4: We evaluate the ability of the pass-adversary from Section 5.1 trained against Latest
without search to transfer to Latest with search.
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Figure F.5: An adversary trained against Latest (left) or cp127 (right), evaluated against both
Latest and cp127 at various visit counts. The adversary always uses 600 visits/move.
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(d) Win margin as white against Latest as black.

Figure F.6: Win rates and win margins of different baseline attacks versus Latest at varying visit
counts (x-axis). 95% confidence intervals are shown. The win margins are negative, indicating that
on average the victim gains more points than the attack does.
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(c) Win margin as white against Latestdef as black.
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Figure F.7: Win rates and win margins of different baseline attacks versus Latestdef at varying
visit counts (x-axis). 95% confidence intervals are shown. None of the attacks see much success.
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(b) Win rate as black against cp127 as white.
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Figure F.8: Win rates and win margins of different baseline attacks versus cp127 at varying visit
counts (x-axis). 95% confidence intervals are shown.

In Figure F.7, we plot the win rate and win margin against Latestdef. In this setting, none of the
attacks work well even when Latestdef is playing with no search, though the mirror attack wins
very occasionally.

We also run the baseline attacks against the weaker cp127, with Figure F.8 plotting the win rate
and win margin of the baseline attacks against cp127 and Figure F.9 plotting the same statistics
against cp127def. cp127 without search is shockingly vulnerable to simple attacks, losing all of
its games against the edge and random attacks. Still, like Latest, cp127 becomes much harder
to exploit once it is playing with at least 4 visits, and cp127def only suffers losses to the mirror
attack.

F.6 UNDERSTANDING THE PASS-ADVERSARY

We observed in Figure 1.1b that the pass-adversary appears to win by tricking the victim into passing
prematurely, at a time favorable to the adversary. In this section, we seek to answer three key
questions. First, why does the victim pass even when it leads to a guaranteed loss? Second, is
passing causally responsible for the victim losing, or would it lose anyway for a different reason?
Third, is the adversary performing a simple strategy, or does it contain some hidden complexity?

Evaluating the Latest victim without search against the pass-adversary over n = 250 games, we
find that Latest passes (and loses) in 247 games and does not pass (and wins) in the remaining 3
games. In all cases, Latest’s value head estimates a win probability of greater than 99.5% after
the final move it makes, although its true win percentage is only 1.2%. Latest predicts it will win
by µ = 134.5 points (σ = 27.9) after its final move, and passing would be reasonable if it were so
far ahead. But in fact it is just one move away from losing by an average of 86.26 points.
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(b) Win rate as black against cp127def as white.
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Figure F.9: Win rates and win margins of different baseline attacks versus cp127def at varying visit
counts (x-axis). 95% confidence intervals are shown.
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Board size (n× n) 7 8 9 10 11 12 13 14 15 16 17 18 19
Training frequency (%) 1 1 4 2 3 4 10 6 7 8 9 10 35

Table F.1: Percentage of games played at each board size throughout the training of our adversaries.
These percentages are the defaults for KataGo training.
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without search.

Figure F.10: Win rate of our adversaries playing as each color against Latest on different board
sizes.

We conjecture that the reason why the victim’s prediction is so mistaken is that the games induced
by playing against the adversarial policy are very different from those seen during the victim’s self-
play training. Certainly, there is no fundamental inability of neural networks to predict the outcome
correctly. The adversary’s value head achieves a mean-squared error of only 3.18 (compared to
49,742 for the victim) on the adversary’s penultimate move. The adversary predicts it will win
98.6% of the time—extremely close to the true 98.8% win rate in this sample.

To verify whether this pathological passing behavior is the reason the adversarial policy wins, we
design a hard-coded defense for the victim, the pass-alive defense described in Section 5.2. Whereas
the pass-adversary won greater than 99% of games against vanilla Latest, we find that it loses all
1600 evaluation games against Latestdef. This confirms the pass-adversary wins via passing.

Unfortunately, this “defense” is of limited effectiveness: as we saw in Section 5.2, repeating the
attack method finds the cyclic-adversary that can beat it. Moreover, the defense causes KataGo to
continue to play even when a game is clearly won or lost, which is frustrating for human opponents.
The defense also relies on hard-coded knowledge about Go, using a search algorithm to compute
the pass-alive territories.

Finally, we seek to determine if the adversarial policy is winning by pursuing a simple high-level
strategy, or via a more subtle exploit such as forming an adversarial example by the pattern of
stones it plays. We start by evaluating the hard-coded baseline adversarial policies described in
Appendix F.5. In Figure F.6, we see that all of our baseline attacks perform substantially worse
than our pass-adversary (Figure F.4a). Moreover, when our baseline attacks do win it is usually due
to the komi bonus given to white (as compensation for playing second), and therefore they almost
never win as black. By contrast, our pass-adversary wins playing as either color, and often by a large
margin (in excess of 50 points).

F.7 PERFORMANCE OF ADVERSARIES ON OTHER BOARD SIZES

Throughout this paper, we have been only reporting on the performance of our adversaries on 19×19
boards. During training, however, our adversaries played games on different board sizes from 7× 7
up to 19× 19 with the default KataGo training frequencies listed in Table F.1, so our adversaries are
also able to play on smaller board sizes.
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Figure F.11: Win rate of Latest with 8192 visits playing against itself on different board sizes.

Figure F.10a plots the win rate of the cyclic-adversary against Latest playing with 8192 visits,
and Figure F.10b plots the win rate of the pass-adversary against Latest playing without search.
The komi is 8.5 for 7 × 7 boards, 9.5 for 8 × 8 boards, and 6.5 otherwise. These values were
taken from analysis by David Wu, creator of KataGo, on fair komis for different board sizes under
Chinese Go rules.13 These are the same komi settings we used during training, except that we had a
configuration typo that swapped the komis for 8× 8 boards and 9× 9 boards during training.

The cyclic-adversary sets up the cyclic structure on board sizes of at least 12 × 12, and not coin-
cidentally, those are board sizes on which the cyclic-adversary achieves wins. The pass-adversary
achieves wins on all board sizes via getting the victim to pass early, but on board sizes of 12×12 and
smaller, the adversary sometimes plays around the edge of the board instead of playing primarily in
one corner.

For comparison, Figure F.11 plots the win rate of Latest with 8192 visits playing against itself.

G TRANSFER OF CYCLIC-ADVERSARY TO OTHER GO SYSTEMS

G.1 ALGORITHMIC TRANSFER

The cyclic-adversary transferred zero-shot to attacking Leela Zero and ELF OpenGo. Note that in
this transfer, not only are the weights of the adversary trained against a different model (i.e. KataGo),
the simulated victim in the search (A-MCTS-S simulating KataGo) is also different from the actual
victim.

We ran ELF OpenGo with its final model and 80,000 rollouts. A weaker model with 80,000 rollouts
was already strong enough to consistently defeat several top-30 Go players (Tian et al., 2019). We
ran Leela Zero with its final model (released February 15, 2021), unlimited time, and a maximum
of 40,000 visits per move. We turned off resignation for both ELF and Leela. We expect that ELF
and Leela play at a superhuman level with these parameters. Confirming this, we found that ELF
and Leela with these parameter settings defeat Latest with 128 visits a majority of the time, and
we estimate in Appendix E.2 that Latest with 128 visits plays at a superhuman level.

Our adversary won 8/132 = 6.1% games against Leela Zero and 5/142 = 3.5% games against ELF
OpenGo. Although this win rate is considerably lower than that attained against KataGo, to beat
these systems at all zero-shot is significant given that even the best human players almost never win
against these systems.

G.2 HUMAN TRANSFER

The cycle attack discovered by our algorithmic adversaries can also be implemented by humans. An
author, who is a Go expert, successfully attacked a variety of Go programs including KataGo and

13The komi analysis is at https://lifein19x19.com/viewtopic.php?p=259358#p259358.
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(a) Move 36: human has set up the inner group (top
right middle) around which to lure the victim to cre-
ate a cycle.

(b) Move 95: human set up a position where it is op-
timal for black to fill in the missing part of the cycle.

(c) Move 122: victim’s cycle group is now sur-
rounded. It remains to capture it before the victim
catches on and defends.

(d) Move 210: by now none of the victim’s stones
in the top right can avoid capture. The victim finally
realizes and resigns.

Figure G.1: Human (white) beats KataGo with 100k visits (black).

Leela Zero playing with 100,000 visits, both of which even top professional players are normally
unable to beat. They also won 14/15 games against JBXKata005, a custom KataGo implemen-
tation not affiliated with the authors, which was the strongest bot available to play on the KGS Go
Server at the time of the test. In addition, they also tested giving JBXKata005 3, 5, and 9 handicap
stones (additional moves at the beginning of the game), and won in all cases.

In the following figures we present selected positions from the games. The full games are available
on our website. First, Figure G.1 shows key moments in a game against KataGo with 100k visits.
Figure G.2 shows the same against LeelaZero with 100k visits. Figure G.3 shows a normal game
against JBXKata005, while Figure G.4 shows a game where JBXKata005 received the advantage of
a 9 stone handicap at the start. In each case the strategy is roughly the following: first, set up an
“inside” group and let or lure the victim to surround it, creating a cyclic group. Second, surround
the cyclic group. Third, guarantee the capture before the victim realizes it is in danger and defends.
In parallel to all these steps, one must also make sure to secure enough of the rest of the board that
capturing the cyclic group will be enough to win.
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(a) Move 61: human has set up the inner group (top
right middle) around which to lure the victim to cre-
ate a cycle.

A

B

(b) Move 95: human next plays A, instead of the safer
connecting move at B, to attempt to encircle victim’s
cyclic group.

(c) Move 156: the encirclement is successful. Vic-
tim could survive by capturing one of the encircling
groups, but will it?

(d) Move 199: the victim failed to see the danger in
time, was captured, and resigns.

Figure G.2: Human (white) beats Leela Zero with 100k visits (black).
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(a) Move 41: the frame of the cyclic group is set up
(lower right middle)

(b) Move 133: human has completed loose encir-
clement of the victim’s cyclic group.

(c) Move 189: although victim’s cyclic group has a
number of liberties left, it can no longer avoid capture
and the game is decided.

(d) Move 237: after nearly 40 more moves the cyclic
group is captured. Victim realizes game is lost and
resigns.

Figure G.3: Human (black) beats JBXKata005 (white).
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(a) Move 0: starting board position. In contrast to a
normal game starting with an empty board, here the
victim received 9 handicap stones, giving it an enor-
mous initial advantage.

(b) Move 38: setting up the inside group is slightly
more challenging here, since the victim has it sur-
rounded from the start.

(c) Move 141: an encirclement is complete, but there
are numerous defects. Victim could easily live inside
or capture key stones.

(d) Move 227: victim fails to grasp any option to sur-
vive. Its group is captured and it resigns.

Figure G.4: Human (white) beats JBXKata005 (black), giving it 9 handicap stones.
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Figure H.1: We evaluate the win rate of an older version of our cyclic-adversary playing with 200
visits / move against Latestdef playing with varying amounts of search. The cyclic-adversary
was trained for 498 million steps and had a curriculum whose victims only went up to 256 visits
of search. Shaded regions and error bars denote 95% Clopper-Pearson confidence intervals over 60
games for A-MCTS-S++ and 90 games for A-MCTS-R. The adversary does better and wins all its
games when performing A-MCTS-R, which models the victim perfectly.

H THE ROLE OF SEARCH IN ROBUSTNESS

Asymptotically, search leads to robustness: with infinite search, a model could perfectly evaluate
every possible move and never make a mistake. However, this level of search is computationally
impossible. Our results show that in computationally feasible regimes, search is insufficient to
produce full robustness. Does search have a meaningful impact at all on robustness in realistic
regimes? In this appendix we show that it does substantially improve robustness, and consequently,
while not a full solution, it is nonetheless a practical tool for creating more robust models and
pipelines.

In results discussed previously, we see that for a fixed adversary, increasing victim search improves
its win rate (e.g. Figure 5.2a). This provides evidence search increases robustness. However, there
are potential confounders. First, the approximation that A-MCTS-S and A-MCTS-S++ makes of
the victim becomes less accurate the more search the victim has, making it harder to exploit for
this algorithm regardless of its general change in robustness. (Indeed, we see in Figure H.1 that
A-MCTS-R, which perfectly models the victim, achieves a higher win rate than A-MCTS-S++.)
Second, for a fixed adversary, the further the victim search diverges from the training, the more
out-of-distribution the victim becomes. Third, it is possible that higher search improves winrate not
through improved robustness or judgment but because it simply has less tendency to create cyclic
positions. A person who hates mushrooms is less likely to eat a poisonous one, regardless of their
judgment identifying them or towards risk in general.

In order to remove some of these confounders, we analyze board positions from games of the cyclic-
adversary vs. victim which the victim lost. The cyclic-adversary examined here was trained for 498
million steps, making it an older version whose curriculum only went up to victims with 256 vis-
its. The positions were selected manually by an author who is an expert Go player to be the last
opportunity for the victim to win the game with subsequent best play by both sides. To facilitate ac-
curate and informative analysis, they selected positions with relatively decisive correct and incorrect
moves. This is necessary because many positions have numerous inconclusive moves that postpone
resolution of the conflict until a later move (typically, a strong threat which requires an immediate
answer, but does not change the overall situation). We vary the level of victim search from the
original 1.6k visits, to 5k, 50k, 100k, 250k, and 500k and examine how much search is needed for
the victim to rank a correct move as the best one. This corresponds roughly (ignoring stochasticity
in the search and in the move choice which depends on the chosen temperature hyperparameter) to
asking "how much search is needed for the victim to play correctly in this position?"
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Visits Game 0 Game 1 Game 2 Game 3 Game 4 Game 5 Game 6 Game 7 Game 8 Game 9
1.6k 7 7 7 7 7 7 7 7 7 7
5k 7 3 ? 7 7 3 7 7 7 7
50k 3 3 ? ? 7 3 7 3 7 3
100k 3 3 ? ? 3 3 7 ? 7 3
250k 3 3 3 ? 3 3 7 3 7 3
500k 3 3 3 ? 3 3 3 3 7 3

Table H.1: Examining how much search is needed to make the correct move in deciding positions.
The original victim, which played the wrong move and consequently lost, used 1.6k visits of search.
Higher visits leads to more correct moves in these positions, suggesting improved robustness.

Results are shown in Table H.1. “3” indicates a correct move that should lead to victory was ranked
#1, “7” indicates a wrong move that should lead to defeat was #1, while “?” indicates an inconclusive
move ranked #1.

We see that in 8 out of 10 positions, 500k visits leads to a winning move, and in many of the positions
a winning move is found with substantially fewer visits. These search numbers are well within a
feasible range. Although the sample size is limited due to the substantial manual analysis needed
for each position, the results provide consistent evidence that adding a reasonable amount of search
is indeed beneficial for robustness.

We show the board positions analyzed in Figures H.2 and H.3. Moves are marked according to the
preceding table, though note the markings for wrong and inconclusive moves are non-exhaustive.
Full game records are available on our website.

We also investigated games played by the fully-trained adversary (i.e. the adversary whose curricu-
lum goes up to 131k visits) against KataGo with 10 million visits. We find that when the adversary
wins in this setting, the decisive move is played a greater number of moves before the cyclic group
is captured than in the previous setting. This means that more victim search is needed to see the
correct result. The adversary has likely learned to favor such positions during the additional training
against higher search victims. There is also likely a selection bias, as the victim will likely win when
the attack is less concealed, although as the adversary achieves a 76.7% win rate this effect cannot
be substantial.

To test this impression quantitatively, we randomly sampled 25 games in which the adversary wins
from each set of opponents. We resampled 1 outlier involving an abnormal, very complicated triple
ko. For each game, we determined the last move from which the victim could have won. We
then measure the number of moves from that move until the cyclic group is captured. For this
measurement we consider the fastest possible sequence to capture, which might slightly differ from
the actual game, because in the actual game the victim might resign before the final capture, or the
adversary might not capture immediately if there is no way for the victim to escape. We include in
the count any moves which postpone the capture that the victim actually played. This represents a
middle ground: including all possible moves to postpone the capture could result in counting many
moves that were irrelevant to the search (e.g. moves that require an answer but have no effect on
the final result, which the victim realized without significantly affecting the search). On the other
hand, removing all moves that postpone the capture might ignore moves that the victim thought
were beneficial and had a significant effect on the search. Since the goal is to determine if there
is a difference in how well hidden the attack is vis-a-vis the search, this middle ground is the most
informative.

We find the lower search games had a mean moves-to-capture of 6.36 moves with a standard de-
viation of 2.87, while the higher search games had a mean of 8.36 with a standard deviation of
2.69. With a standard t-test for difference in means, this is significant at the 5% level (p = 0.0143).
This also matches a qualitative assessment that the higher visit positions are more complex and have
more potential moves, even if they are not part of the optimal sequence. Overall, this suggests that
increased search leads to increased robustness, but that the adversary is able to partially combat this
by setting up complex positions.
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Figure H.2: Part 1 of positions analyzed with varying levels of search. Correct moves are marked
“3”, and non-exhaustive examples of incorrect and inconclusive moves that the victim likes to play
are marked with “7” and “?” respectively.
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Figure H.3: Part 2 of positions analyzed with varying levels of search. Correct moves are marked
“3”, and non-exhaustive examples of incorrect and inconclusive moves that the victim likes to play
are marked with “7” and “?” respectively.
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Visits Game 0 Game 1 Game 2 Game 3 Game 4 Game 5
1.6k 7 7 7 7 7 7
5k 7 7 7 7 7 7
50k 3 3 7 7 7 7
100k 3 3 7 7 7 7
250k 3 3 3 7 7 3
500k 3 3 3 7 3 3

Table H.2: Examining how much search is needed to make the correct move in positions with a 3
move difference between the deciding move and capture. Similar to the preceding table, the original
victim had 1.6k visits. Higher visits again leads to more correct moves and improved robustness.

We observe that with lower search, there are 6 games which have a 3 move difference between the
deciding move and the capture, while with higher search there are none less than 5. Is a 3 move
trap too few to catch a high search victim? We examine these 6 positions (shown in Figure H.4)
further by varying the amount of search, as in the preceding experiment. Results are shown in
Table H.2. Similar to the positions examined previously, higher search typically leads to a correct
move, although there is one exception where none of the visit levels tested fixed the victim’s mistake.
We tested this one position with 1 million, 2.5 million, and 10 million visits, and found that 1 million
is still insufficient but 2.5 million and 10 million find the correct move. Therefore, it does seem these
positions are not enough to fool a high search victim. Once again, this indicates overall that search
does not give full robustness but still yields improvements.

To further confirm that reasonable amounts of search are not sufficient for robustness, we examined
5 positions from random games where our adversary beat a KataGo victim with 1 million visits. We
determined the last chance for victory as above, and gave KataGo 1 billion visits to find a correct
move. The positions are shown in Figure H.5 and full game records are available on our website. In
all 5 positions, a wrong game-losing move was still selected. This is around two orders of magnitude
beyond the number of visits used in typical computer vs. computer tournaments, let alone normal
games against humans. Consequently, short of revolutionary progress in hardware, we are unlikely
to be able to solve this vulnerability through increasing search alone.

I HUMAN EXPERIMENTS AND ANALYSIS

I.1 HUMANS VS. ADVERSARIAL POLICIES

An author who is a Go novice (strength weaker than 20kyu) played manual games against both the
strongest cyclic-adversary from Figure 5.1 and the strongest pass-adversary from Figure F.1. In the
games against the pass-adversary, the author was able to achieve an overwhelming victory. In the
game against the cyclic-adversary, the author won but with a much smaller margin. See Figure I.1
for details.

Our evaluation is imperfect in one significant way: the adversaries did not play with an accurate
model of the author (rather they modeled the author as Latest with 1 visit). However, given the
limited transferability of our adversaries to different KataGo checkpoints (see Figure 5.1, Figure F.1,
and Appendix F.4), we conjecture that our adversaries would not win even if they had access to an
accurate model of the author.

I.2 HUMAN ANALYSIS OF THE CYCLIC-ADVERSARY

In the following we present human analysis of games with the cyclic-adversary (the type shown in
Figure 1.1a) playing against Latestdef with 1600 visits. This analysis was done by an expert-
level Go player on our team. We first analyze in detail a game where the adversary won. We then
summarize a sample of games where the adversary lost.
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Figure H.4: Positions with a 3 move difference between deciding move and capture, analyzed with
varying levels of search. Correct moves are marked “3”, and non-exhaustive examples of incorrect
and inconclusive moves that the victim likes to play are marked with “7” and “?” respectively.
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Figure H.5: Positions that are not solved with even 1 billion visits.
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(a) An author (B) defeats the strongest cyclic-
adversary from Figure 5.1 by 36.5 points. Explore
the game.

(b) An author (W) defeats the strongest cyclic-
adversary from Figure 5.1 by 65.5 points. Explore
the game.

(c) An author (B) defeats the strongest pass-adversary
from Figure F.1. Explore the game.

(d) An author (W) defeats the strongest pass-
adversary from Figure F.1 using A-MCTS-S++. Ex-
plore the game.

Figure I.1: Games between an author of this paper (who is a Go amateur) and the strongest adver-
saries from Figure 5.1 and Figure F.1. In all games, the author achieves a victory. The adversaries
used 600 playouts / move and used Latest as the model of its human opponent. The adversaries
used A-MCTS-S for all games except the one marked otherwise.
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(a) Move 9: after this move victim already has the
advantage, if it were robust.

20

(b) Move 20: adversary initiates a key tactic to create
a cycle group.

74

(c) Move 74: adversary slowly begins to surround
victim.
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(d) Move 189 (89): victim could have saved X group
by playing at "A" instead, but now it will be captured.

Figure I.2: The cyclic-adversary (white) exploiting a KataGo victim (black) by capturing a large
group that a human could easily save. The subfigures show different moves in the game. Explore
the full game.
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B

A

Figure I.3: A game the cyclic-adversary (white) lost. The adversary could take a decisive lead by
capturing at A, but instead plays B and lets the victim (black) save their group.

Adversary win analysis The game in Figure I.2 shows typical behavior and outcomes with this
adversary: the victim gains an early and soon seemingly insurmountable lead. The adversary sets a
trap that would be easy for a human to see and avoid. But the victim is oblivious and collapses.

In this game the victim plays black and the adversary white. The full game is available on our
website. We see in Figure I.2a that the adversary plays non-standard, subpar moves right from the
beginning. The victim’s estimate of its win rate is over 90% before move 10, and a human in a
high-level match would likewise hold a large advantage from this position.

On move 20 (Figure I.2b), the adversary initiates a tactic we see consistently, to produce a "dead"
(at least, according to normal judgment) square 4 group in one quadrant of the board. Elsewhere,
the adversary plays low, mostly second and third line moves. This is also common in its games, and
leads to the victim turning the rest of the center into its sphere of influence. We suspect this helps the
adversary later play moves in that area without the victim responding directly, because the victim is
already strong in that area and feels confident ignoring a number of moves.

On move 74 (Figure I.2c), the adversary begins mobilizing its "dead" stones to set up an encir-
clement. Over the next 100+ moves, it gradually surrounds the victim in the top left. A key pattern
here is that it leads the victim into forming an isolated group that loops around and connects to itself
(a group with a cycle instead of tree structure). David Wu, creator of KataGo (Wu, 2019), suggested
Go-playing agents like the victim struggle to accurately judge the status of such groups, but they are
normally very rare. This adversary seems to produce them consistently.

Until the adversary plays move 189 (Figure I.2d), the victim could still save that cycle group (marked
with X), and in turn still win by a huge margin. There are straightforward moves to do so that would
be trivial to find for any human playing at the victim’s normal level. Even a human who has only
played for a few months or less might find them. For instance, on 189 it could have instead played at
the place marked "A." But after 189, it is impossible to escape, and the game is reversed. The victim
seems to have been unable to detect the danger. Play continues for another 109 moves but there is
no chance for the victim (nor would there be for a human player) to get out of the massive deficit it
was tricked into.

Adversary loss analysis In all cases examined where the adversary lost, it did set up a cycle group,
or a cycle group with one stone missing, which is likely still a cycle as perceived by the neural net
of the victim (see Figure I.2d for an example where it misjudges such a position).

In four out of ten cases, the adversary could either immediately capture the cycle group or could
capture it on its next turn if it played correctly. An example is shown in Figure I.3. But instead it
allowed the victim to save the group and win the game. We found this is due in some situations

53

https://goattack.far.ai/game-analysis#qualitative


Preprint

to imperfect modeling of the victim, i.e., modeling a victim without search in A-MCTS-S++ even
though the true victim has search. This can lead to the adversary thinking the victim will not defend,
and therefore there is no need to capture immediately, while in reality the victim is about to defend
and the opportunity will disappear. In such cases, A-MCTS-R leads to the correct move. Besides
this search limitation, other contributing factors potentially include the adversary itself not being
completely immune to misjudging cycle groups, or the adversary’s skill at Go in general being too
low, resulting in many mistakes.

In the other six cases the adversary never has any clear opportunity to capture the cycle group.
This is because the victim breaks through the attempted encirclement in some fashion, either by
capturing some surrounding stones or simply connecting to one of its other groups. Although this
could indicate the victim recognized the danger to the cycle group, the moves are typically also
consistent with generic plays to wrap up the game with the large lead that it has established.

I.3 HUMAN ANALYSIS OF THE ADVERSARY’S TRAINING PROGRESSION

To understand the evolution of our adversary over the training process, we randomly sampled 5
games against each of 4 victims at approximately 10% training step intervals up to 545 million
steps. The 4 victims were cp39def with no search, cp127def with no search, Latestdef with no
search, and Latestdef with 4096 visits. These correspond to the victims in Figure 5.1. The full
sampled games are available on our website. An expert Go player on our team analyzed the games,
looking for patterns in how the adversary won (or lost).

We first note that in all cases against a hardened victim, the adversary wins as a result of a key
capture which its opponent somehow misjudged. In no game that we analyzed did the victim simply
play too conservatively and lose without a fight.

Early in the training process, the adversary quickly achieves a good winrate against cp39def, but is
only gradually improving against the other victims. Here the attack is not very consistent. When the
adversary is successful, the exploit typically has low moves-to-capture (defined in Appendix H). Our
analysis did not reveal a consistent strategy understandable by humans. Overall, these early training
games suggest that without search, KataGo’s early checkpoints have significant trouble accurately
judging liberties in a variety of positions.

Around 220 million training steps, the adversary is winning consistently against cp127def and
Latestdef with no search. We now see consistent patterns. The adversary lures the victim into
creating a large group with few liberties. It sets up numerous kos and many other single stones in
atari (i.e., could be captured by the victim on the next move) around that group. Eventually, the
victim does not realize it is about to run out of liberties, and the adversary captures the large group,
leading to a won game. The finishing blow is often a move where the victim fills one of their own
last two liberties in order to make sure two of their groups stay connected, but this leads to losing
everything. An example is shown in Figure I.4.

This attack has similarities to the cycle attack, in that it attacks a large group that the victim seems
unable to judge accurately. However, there is a far stronger emphasis on kos and stones in atari, and
the moves-to-capture is generally minimal (i.e., up until the actual capture the victim could save its
group, or the key portion of it). The targeted group is sometimes a cyclic group but more often not.
Furthermore, unlike later versions of the cycle attack, this attack seems inadequate to beat a very
moderate amount of search – the adversary still has near 0% winrate against Latestdef with 4096
visits.

At the same time, the win percentage against cp39def begins to fall. Analyzing the games, we
hypothesize that this is not due to cp39def judging these positions more accurately, but that it more
frequently plays defensive moves when far ahead. Compared to earlier attacks, this one requires
giving the opponent an enormous point lead, because to set up the large target group the adversary
gives up most of the board. In addition, leaving many stones in atari provides numerous and straight-
forward defensive captures that happen to save the large group. We observe in practice that cp39def
makes many of these captures, as well as other straightforward defensive moves, even when they
are not mandatory and there are other places on the board that would give more points. At the same
time, although the adversary’s win percentage falls against this victim, it never goes to 0; the ad-
versary still wins a non-trivial number of games. In combination, this suggests that cp39def does
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(a) Black should have played at the location marked
“3”, giving up some of their stones on the bottom
in order to secure the main group. But instead black
played the move marked “7”, which makes their en-
tire right side capturable on white’s next move.

(b) Both players exchange a few moves on the left
side, giving the victim more chances to escape, but it
doesn’t see the danger. At this point White captures
everything on the right, leading to victory by a large
margin.

Figure I.4: The losing move and decisive capture in a game between Latestdef (black) and the
adversary with 220 million training steps (white).

not clearly see the trap being created or intentionally defend against it, but rather just plays many
defensive moves that often happen to save it. This has similarities to the behavior of human begin-
ners, who often make many random defensive moves because they cannot tell clearly if a defense
is needed. As in cp39def’s games, in many cases they are unnecessary, but in some they avert a
disaster.

Around 270 million steps and beyond, the adversary is mostly using the cycle attack, only occa-
sionally making non-cycle attacks. It is doing very well against cp127def and Latestdef without
search. However, until nearly 500 million steps the adversary still struggles against opponents with
search. We hypothesize the main factor is that the moves-to-capture is too low to fool a victim with
this level of search - successful attacks against this victim seem to have a moves-to-capture of at
least 3, while the attacks produced at this stage in the training still often have fewer (frequently due
to the many kos and stones in atari, which seemed helpful for the previous attack but not always
helpful here). Towards the end of the training, the adversary starts producing cycles with higher
moves-to-capture, and starts to win consistently against stronger victims with more search.

J ADVERSARIAL BOARD STATE

This paper focuses on training an agent that can exploit Go-playing AI systems. A related problem
is to find an adversarial board state which could be easily won by a human, but which Go-playing AI
systems will lose from. In many ways this is a simpler problem, as an adversarial board state need
not be a state that the victim agent would allow us to reach in normal play. Nonetheless, adversarial
board states can be a useful tool to probe the blind spots that Go AI systems may have.

In Figure J.1 we present a manually constructed adversarial board state. Although quite unlike what
would occur in a real game, it represents an interesting if trivial (for a human) problem. The black
player can always win by executing a simple strategy. If white plays in between two of black’s
disconnected groups, then black should immediately respond by connecting those groups together.
Otherwise, the black player can connect any two of its other disconnected groups together. Whatever
the white player does, this strategy ensures that blacks’ groups will eventually all be connected
together. At this point, black has surrounded the large white group on the right and can capture it,
gaining substantial territory and winning.
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Figure J.1: A hand-crafted adversarial example for KataGo and other Go-playing AI systems. It is
black’s turn to move. Black can guarantee a win by connecting its currently disconnected columns
together and then capturing the large white group on the right. However, KataGo playing against
itself from this position loses 40% of the time as black.

Figure K.1: Illustration of a ladder. White ran across the board, but has hit the top edge and has
nowhere left to run. Black can capture on the next move by playing in the top right corner.

Although this problem is simple for human players to solve, it proves quite challenging for otherwise
sophisticated Go AI systems such as KataGo. In fact, KataGo playing against a copy of itself loses
as black 40% of the time. We conjecture this is because black’s winning strategy, although simple,
must be executed flawlessly and over a long horizon. Black will lose if at any point it fails to
respond to white’s challenge, allowing white to fill in both empty spaces between black’s groups.
This problem is analogous to the classical cliff walking reinforcement learning task (Sutton & Barto,
2018, Example 6.6).

K KNOWN FAILURES OF GO-PLAYING AGENTS

The following draws largely on discussion with David Wu, creator of KataGo.
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Ladders A "ladder" is often the first tactic a beginner learns. An example is shown in Figure K.1.
In this pattern, the defending side only has a single move to attempt to escape, while the attacking
side only has a single move to continue threatening the defender. After each move in the pattern,
the same situation recurs, shifted one space over diagonally. The chain continues until either the
defender runs into the edge of the board or more enemy stones, at which time there is no more room
to escape, or conversely into the defender’s allied stones, in which case the defender escapes and
the attacker is usually left disastrously overextended. Consequently, it is a virtually unbranching
pattern, but one that takes many moves (often dozens), depends on the position all the way on the
other side of the board, and can decide the result of the game.

Bots struggle to understand when escape and capture is possible, especially fairly early in the game.
This issue occurs across many different models. It is especially prevalent early in training and with
less search, but even with thousands of playouts per move it still occurs.

This issue has been solved in KataGo by adding a separate, hardcoded ladder module as an input
feature. Such an approach, however, would not work for flaws one is unaware of, or where hardcoded
solutions are prohibitively difficult.

Liberty Counts Even without a long variation or consistent pattern, bots may occasionally fail to
see that something can be captured on their move or their opponent’s next move. Known examples
of this occurred with very large groups in slightly unusual situations, but nonetheless where an
intermediate human would easily make the correct judgment.

This is again mitigated in KataGo through a hardcoded auxiliary algorithm that provides input fea-
tures (liberty counts) to the main network.

Complicated Openings There are some extremely complicated opening variations, especially
variations of Mi Yuting’s Flying Dagger joseki, which have crucial, unusual moves required to avoid
a disadvantage. Once again, KataGo solved this with a manual intervention. Here it was through
directly adding a large collection of variations to the training. Other bots still play certain variations
poorly.

Cyclic Topology This is a position with a loop, such as the marked group in Figure 1.1a. It is
possible but very uncommon in normal play. David Wu’s hypothesis is that information propagates
through the neural network in a way analagous to going around the cycle, but it cannot tell when it
has reached a point it has "seen" before. This leads to it counting each liberty multiple times and
judging such groups to be very safe regardless of the actual situation.

We, the authors of this paper, were not aware of this weakness of Go bots until after we had trained
the cyclic-adversary. It was also not known that this weakness could be consistently exploited.

Mirror Go This is where one player copies the other player’s moves, mirroring them across the
board diagonally. This is typically not part of training nor other aspects of agents’ construction.
However, even without specific counter strategies, there is a long time over the course of the game
to stumble into a position where a generically good move also breaks the mirror. So this strategy is
not a consistent weakness, but can occasionally win games if no such good mirror-breaking move
happens to come up.

Other Finally, there are also other mistakes bots make that are more complex and more difficult
to categorize. Even though the best bots are superhuman, they are certainly still a ways away from
perfect play, and it is not uncommon for them to make mistakes. In some positions these mistakes
can be substantial, but fixing them may be not so much about improving robustness as it is about
building an overall stronger agent.

Summary There are a number of situations that are known to be challenging for computer Go
players. Some can be countered through targeted modifications and additions to the model archi-
tecture or training, however, as we see with Cyclic Topology, it is difficult to design and implement
solutions one-by-one to fix every possibility. Further, the weaknesses may be unknown or not clearly
understood – for instance, Cyclic Topology is normally rare, but through our work we now know
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it can be produced consistently. Thus, it is critical to develop algorithmic approaches for detecting
weaknesses, and eventually for fixing them.

L CHANGELOG

arxiv.org/abs/2211.00241v2→ arxiv.org/abs/2211.00241v3 changes:

• We update our evaluations to use a stronger cyclic-adversary that was trained against vic-
tims with higher visit counts. For example, Figure 1.1 now features a game between this
stronger cyclic-adversary and Latestdef with 107 visits.

• We evaluate the transferability of our attack in Section 5.5 and Appendix G. An author of
the paper (our resident Go-expert) was able to learn how to manually perform the cyclic-
attack (i.e. without computer assistance) and win convincingly against a range of superhu-
man Go AIs.

• We describe a vulnerability introduced by the pass-alive defense (Appendix B.6.1).
• We give more precise estimates of compute required to train our adversaries and KataGo

(Appendix D).
• We discuss the role of search in robustness (Appendix H).
• We analyze the evolution of our cyclic-adversary’s strategy over the course of training

(Appendix I.3).
• Figure and table numbering changed to be section-relative.
• We make small improvements to figures and text across the whole paper.
• We update goattack.far.ai to reflect the v3 paper changes.

arxiv.org/abs/2211.00241v1→ arxiv.org/abs/2211.00241v2 changes:

• We train, evaluate, and analyze a new cyclic-adversary (Figure 1.1a) which behaves in a
qualitatively different manner from our v1 adversary (now called the pass-adversary). Our
cyclic-adversary can beat KataGo playing with up to 107 visits per move of search.

• We add a detailed description of the Go rules used in our evaluations (Appendix A).
• We add an estimate of the strength of the AlphaZero agent that was successfully adversari-

ally attacked by Timbers et al. (2022) using methods similar to our own (Appendix E.3).
• We redo the evaluations of our v1 pass-adversary with configurations more similar to those

used in actual match-play (Appendix F).
• We add a summary of known failures of Go AIs (Appendix K).
• We make small improvements to figures and text across the whole paper.
• We update our paper website (goattack.far.ai) to reflect the v2 paper changes.
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